Loading…
Metabolic Engineering of Osmoprotectant Accumulation in Plants
Drought and salinity are among the worst scourges of agriculture. One effective mechanism to reduce damage from these stresses is the accumulation of high intracellular levels of osmoprotectant compounds. These compounds include proline, ectoine, betaines, polyols, and trehalose and have evolved in...
Saved in:
Published in: | Metabolic engineering 2002-01, Vol.4 (1), p.49-56 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Drought and salinity are among the worst scourges of agriculture. One effective mechanism to reduce damage from these stresses is the accumulation of high intracellular levels of osmoprotectant compounds. These compounds include proline, ectoine, betaines, polyols, and trehalose and have evolved in many different organisms. Since some crop plants have low levels of these osmoprotectants or none at all, engineering osmoprotectant biosynthesis pathways is a potential way to improve stress tolerance. First-generation engineering work—much of it with single genes—has successfully introduced osmoprotectant pathways into plants that lack them naturally, and this has often improved stress tolerance. However, the engineered osmoprotectant levels are generally low and the increases in tolerance commensurately small. To get beyond trace levels of osmoprotectants and marginal tolerance increments we need to use flux measurements to diagnose what limits osmoprotectant levels in engineered plants and to use iterative cycles of engineering to overcome these limitations. |
---|---|
ISSN: | 1096-7176 1096-7184 |
DOI: | 10.1006/mben.2001.0208 |