Loading…
A Correlation Algorithm for the Automated Quantitative Analysis of Shotgun Proteomics Data
Quantitative shotgun proteomic analyses are facilitated using chemical tags such as ICAT and metabolic labeling strategies with stable isotopes. The rapid high-throughput production of quantitative ”shotgun” proteomic data necessitates the development of software to automatically convert mass spectr...
Saved in:
Published in: | Analytical chemistry (Washington) 2003-12, Vol.75 (24), p.6912-6921 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Quantitative shotgun proteomic analyses are facilitated using chemical tags such as ICAT and metabolic labeling strategies with stable isotopes. The rapid high-throughput production of quantitative ”shotgun” proteomic data necessitates the development of software to automatically convert mass spectrometry-derived data of peptides into relative protein abundances. We describe a computer program called RelEx, which uses a least-squares regression for the calculation of the peptide ion current ratios from the mass spectrometry-derived ion chromatograms. RelEx is tolerant of poor signal-to-noise data and can automatically discard nonusable chromatograms and outlier ratios. We apply a simple correction for systematic errors that improves the accuracy of the quantitative measurement by 32 ± 4%. Our automated approach was validated using labeled mixtures composed of known molar ratios and demonstrated in a real sample by measuring the effect of osmotic stress on protein expression in Saccharomyces cerevisiae. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/ac034790h |