Loading…

Photochemical Charge Transfer and Trapping at the Interface between an Organic Adlayer and an Oxide Semiconductor

Identification of charge transfer and trapping sites on semiconducting oxide surfaces is of fundamental importance in furthering the field of heterogeneous photocatalysts. Using scanning tunneling microscopy, electron energy loss spectroscopy, and photodesorption, we observed both electron trapping...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2003-12, Vol.125 (49), p.14974-14975
Main Authors: Henderson, Michael A, White, J. Michael, Uetsuka, Hiroshi, Onishi, Hiroshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Identification of charge transfer and trapping sites on semiconducting oxide surfaces is of fundamental importance in furthering the field of heterogeneous photocatalysts. Using scanning tunneling microscopy, electron energy loss spectroscopy, and photodesorption, we observed both electron trapping and hole transfer events on the (110) surface of TiO2 rutile. UV irradiation of a saturated monolayer of trimethyl acetate (TMA) on TiO2(110) at room temperature resulted in hole transfer to the carboxylate group, followed by (CH3)3C−COO bond cleavage and desorption of CO2 and isobutene/isobutane. Hole transfer to TMA proceeded in the absence of a gas-phase electron scavenger (which is typically O2) because the accompanying photogenerated electrons could be trapped at the surface as Ti3+ cations bound to bridging OH groups. The extent of electron trapping, gauged by electron spectroscopy, correlated directly with the yields of photodesorption fragments resulting from the hole transfer channel. Charge at the Ti3+ sites was titrated in the dark via a reaction between O2 and the Ti3+−OH groups.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja037764+