Loading…
Electronic transport through carbon nanotubes: effects of structural deformation and tube chirality
Atomistic simulations using a combination of classical force field and density-functional theory (DFT) show that carbon atoms remain essentially sp(2) coordinated in either bent tubes or tubes pushed by an atomically sharp atomic-force microscope (AFM) tip. Subsequent Green's-function-based tra...
Saved in:
Published in: | Physical review letters 2002-03, Vol.88 (12), p.126805-126805, Article 126805 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Atomistic simulations using a combination of classical force field and density-functional theory (DFT) show that carbon atoms remain essentially sp(2) coordinated in either bent tubes or tubes pushed by an atomically sharp atomic-force microscope (AFM) tip. Subsequent Green's-function-based transport calculations reveal that for armchair tubes there is no significant drop in conductance, while for zigzag tubes the conductance can drop by several orders of magnitude in AFM-pushed tubes. The effect can be attributed to simple stretching of the tube under tip deformation, which opens up an energy gap at the Fermi surface. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.88.126805 |