Loading…

Escherichia coli LPS induces heat shock protein 25 in intestinal epithelial cells through MAP kinase activation

Protection of colonic epithelial integrity and function is critical, because compromises in mucosal functions can lead to adverse and potentially life-threatening effects. The gut flora may contribute to this protection, in part, through the sustained induction of cytoprotective heat shock proteins...

Full description

Saved in:
Bibliographic Details
Published in:American journal of physiology: Gastrointestinal and liver physiology 2004-04, Vol.286 (4), p.G645-G652
Main Authors: Kojima, Keishi, Musch, Mark W, Ropeleski, Mark J, Boone, David L, Ma, Averil, Chang, Eugene B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Protection of colonic epithelial integrity and function is critical, because compromises in mucosal functions can lead to adverse and potentially life-threatening effects. The gut flora may contribute to this protection, in part, through the sustained induction of cytoprotective heat shock proteins (HSPs) in surface colonocytes. In this study, we investigated whether Escherichia coli LPS mediates bacteria-induced HSP by using cultured young adult mouse colon (YAMC) cells, an in vitro model of the colonic epithelium. E. coli LPS led to an epithelial cell-type specific induction of HSP25 in a time- and concentration-dependent manner, an effect that did not involve changes in HSP72. YAMC cells expressed the toll-like receptors (TLR)2 and TLR4 but not the costimulatory CD14 molecule. Whereas LPS stimulated both the p38 and ERK1/2 but not the stress-activated protein kinase/c-Jun NH(2)-terminal kinase, signaling pathways in the YAMC cells, all three were stimulated in RAW macrophage cells (in which no LPS-induced HSP25 expression was observed). The p38 inhibitor SB-203580 and the MAP kinase kinase-1 inhibitor PD-98059 inhibited HSP25 induction by LPS. LPS treatment also conferred protection against actin depolymerization induced by the oxidant monochloramine. The HSP25 dependence of the LPS protective effect was outlined in inhibitor studies and through adenovirus-mediated overexpression of HSP25. In conclusion, LPS may be an important mediator of enteric bacteria-induced expression of intestinal epithelial HSP25, an effect that may contribute to filamentous actin stabilization under physiological as well as pathophysiological conditions and thus protection of colonic epithelial integrity.
ISSN:0193-1857
1522-1547
DOI:10.1152/ajpgi.00080.2003