Loading…

Estimates of repolarization dispersion from electrocardiographic measurements

Repolarization dispersion (Rd) is frequently mentioned as a predictor of cardiac abnormalities. We present a new measure of Rd based on the root-mean-square (RMS) curve of an ECG lead set and compare its performance with that of the commonly used QT dispersion (QTd) measure with the use of recovery...

Full description

Saved in:
Bibliographic Details
Published in:Circulation (New York, N.Y.) N.Y.), 2000-08, Vol.102 (6), p.685-691
Main Authors: FULLER, M. S, SANDOR, G, PUNSKE, B, TACCARDI, B, MACLEOD, R. S, ERSHLER, P. R, GREEN, L. S, LUX, R. L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Repolarization dispersion (Rd) is frequently mentioned as a predictor of cardiac abnormalities. We present a new measure of Rd based on the root-mean-square (RMS) curve of an ECG lead set and compare its performance with that of the commonly used QT dispersion (QTd) measure with the use of recovery times measured from directly recorded canine electrograms. Using isolated, perfused canine hearts suspended in a torso-shaped electrolytic tank, we simultaneously recorded electrograms from 64 epicardial sites and ECGs from 192 "body surface" sites. RMS curves were derived from 4 lead sets: epicardial, body surface, precordial, and a 6-lead optimal set. Repolarization was altered by changing cycle length, temperature, and activation sequence. Rd, calculated directly from recovery times of the 64 epicardial potentials, was then compared with the width of the T wave of the RMS curve and with QTd for each of these 4 lead sets. The correlation between T-wave width and Rd for each lead set, respectively, was epicardium, 0.91; body surface, 0.84; precordial, 0.72; and optimal leads, 0.81. The correlation between QTd and Rd for each lead set was epicardium, 0.46; body surface, 0.47; precordial, 0.17; and optimal leads, 0.11. RMS curve analysis provides an accurate method of estimating Rd from the body surface. In contrast, QTd analysis provides a poor estimate of Rd.
ISSN:0009-7322
1524-4539
DOI:10.1161/01.CIR.102.6.685