Loading…
Efficient perceptron learning using constrained steepest descent
An algorithm is proposed for training the single-layered perceptron. The algorithm follows successive steepest descent directions with respect to the perceptron cost function, taking care not to increase the number of misclassified patterns. The problem of finding these directions is stated as a qua...
Saved in:
Published in: | Neural networks 2000-04, Vol.13 (3), p.351-364 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An algorithm is proposed for training the single-layered perceptron. The algorithm follows successive steepest descent directions with respect to the perceptron cost function, taking care not to increase the number of misclassified patterns. The problem of finding these directions is stated as a quadratic programming task, to which a fast and effective solution is proposed. The resulting algorithm has no free parameters and therefore no heuristics are involved in its application. It is proved that the algorithm always converges in a finite number of steps. For linearly separable problems, it always finds a hyperplane that completely separates patterns belonging to different categories. Termination of the algorithm without separating all given patterns means that the presented set of patterns is indeed linearly inseparable. Thus the algorithm provides a natural criterion for linear separability. Compared to other state of the art algorithms, the proposed method exhibits substantially improved speed, as demonstrated in a number of demanding benchmark classification tasks. |
---|---|
ISSN: | 0893-6080 1879-2782 |
DOI: | 10.1016/S0893-6080(00)00016-2 |