Loading…

Expression of Patella vulgata Orthologs of engrailed and dpp-BMP2/4 in Adjacent Domains during Molluscan Shell Development Suggests a Conserved Compartment Boundary Mechanism

The engrailed gene is well known from its role in segmentation and central nervous system development in a variety of species. In molluscs, however, engrailed is involved in shell formation. So far, it seemed that engrailed had been co-opted uniquely for this particular process in molluscs. Here, we...

Full description

Saved in:
Bibliographic Details
Published in:Developmental biology 2002-06, Vol.246 (2), p.341-355
Main Authors: Nederbragt, Alexander J., van Loon, André E., Dictus, Wim J.A.G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The engrailed gene is well known from its role in segmentation and central nervous system development in a variety of species. In molluscs, however, engrailed is involved in shell formation. So far, it seemed that engrailed had been co-opted uniquely for this particular process in molluscs. Here, we show that, in the gastropod mollusc Patella vulgata, an engrailed ortholog is expressed in the edge of the embryonic shell and in the anlage of the apical sensory organ. Surprisingly, a dpp-BMP2/4 ortholog is expressed in cells of the ectoderm surrounding, but not overlapping, the engrailed-expressing shell-forming cells. It is also expressed in the anlage of the eyes. Earlier it was shown that a compartment boundary exists between the cells of the embryonic shell and the adjacent ectoderm. We conclude that engrailed and dpp are most likely involved in setting up a compartment boundary between these cells, very similar to the situation in, for example, the developing wing imaginal disc in Drosophila. We suggest that engrailed became involved in shell formation because of its ancestral role, which is to set up compartment boundaries between embryonic domains.
ISSN:0012-1606
1095-564X
DOI:10.1006/dbio.2002.0653