Loading…
Delays, connection topology, and synchronization of coupled chaotic maps
We consider networks of coupled maps where the connections between units involve time delays. We show that, similar to the undelayed case, the synchronization of the network depends on the connection topology, characterized by the spectrum of the graph Laplacian. Consequently, scale-free and random...
Saved in:
Published in: | Physical review letters 2004-04, Vol.92 (14), p.144101-144101, Article 144101 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider networks of coupled maps where the connections between units involve time delays. We show that, similar to the undelayed case, the synchronization of the network depends on the connection topology, characterized by the spectrum of the graph Laplacian. Consequently, scale-free and random networks are capable of synchronizing despite the delayed flow of information, whereas regular networks with nearest-neighbor connections and their small-world variants generally exhibit poor synchronization. On the other hand, connection delays can actually be conducive to synchronization, so that it is possible for the delayed system to synchronize where the undelayed system does not. Furthermore, the delays determine the synchronized dynamics, leading to the emergence of a wide range of new collective behavior which the individual units are incapable of producing in isolation. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.92.144101 |