Loading…
Synchronization in small-world systems
We quantify the dynamical implications of the small-world phenomenon by considering the generic synchronization of oscillator networks of arbitrary topology. The linear stability of the synchronous state is linked to an algebraic condition of the Laplacian matrix of the network. Through numerics and...
Saved in:
Published in: | Physical review letters 2002-07, Vol.89 (5), p.054101-054101, Article 054101 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We quantify the dynamical implications of the small-world phenomenon by considering the generic synchronization of oscillator networks of arbitrary topology. The linear stability of the synchronous state is linked to an algebraic condition of the Laplacian matrix of the network. Through numerics and analysis, we show how the addition of random shortcuts translates into improved network synchronizability. Applied to networks of low redundancy, the small-world route produces synchronizability more efficiently than standard deterministic graphs, purely random graphs, and ideal constructive schemes. However, the small-world property does not guarantee synchronizability: the synchronization threshold lies within the boundaries, but linked to the end of the small-world region. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.89.054101 |