Loading…

Targeted DNA integration within different functional gene domains in yeast reveals ORF sequences as recombinational cold-spots

The efficiency of gene targeting within different segments of genes in yeast was estimated by transforming yeast cells with double-stranded integrative plasmids, bearing functional gene domains [promoter (P), ORF (O) and terminator (T)] derived from the common genetic markers HIS3, LEU2, TRP1 and UR...

Full description

Saved in:
Bibliographic Details
Published in:Molecular genetics and genomics : MGG 2004-05, Vol.271 (4), p.437-446
Main Authors: Gjuracic, K, Pivetta, E, Bruschi, C.V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The efficiency of gene targeting within different segments of genes in yeast was estimated by transforming yeast cells with double-stranded integrative plasmids, bearing functional gene domains [promoter (P), ORF (O) and terminator (T)] derived from the common genetic markers HIS3, LEU2, TRP1 and URA3. Transformation experiments with circular plasmids carrying a single gene domain demonstrated that the 5' and 3' flanking DNA regions (P and T) of the HIS3 and URA3 genes are preferred as sites for plasmid integration by several fold over the corresponding ORFs. Moreover, when plasmids bearing combinations of two or three regions were linearized to target them to a specific site of integration, three of the ORFs were found to be less preferred as sites for plasmid integration than their corresponding flanking regions. Surprisingly, in up to 50% of the transformants obtained with plasmids that had been linearized within coding sequences, the DNA actually integrated into neighbouring regions. Almost the same frequencies of ORF mis-targeting were obtained with plasmid vectors containing only two functional domains ("PO" or "OT") of the gene URA3, demonstrating that this event is not the consequence of competition between homologous DNA regions distal to the ORF. Therefore, we suggest that coding sequences could be considered to be "cold spots" for plasmid integration in yeast.
ISSN:1617-4615
1617-4623
DOI:10.1007/s00438-004-0994-8