Loading…
Mechanism and Stereochemistry of Enzymatic Cyclization of 24,30-Bisnor-2,3-oxidosqualene by Recombinant β-Amyrin Synthase
Recombinant β-amyrin synthase from Pisum sativum converted 24,30-bisnor-2,3-oxidosqualene into a 3:1:0.2 mixture of 29,30-bisnor-β-amyrin, 29,30-bisnorgermanicol, and 29,30-bisnor-δ-amyrin. Further, enzyme reactions with [23-13C]- and [23,23-2H]-labeled isotopomers demonstrated that the cyclization...
Saved in:
Published in: | Journal of the American Chemical Society 2004-06, Vol.126 (22), p.6880-6881 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recombinant β-amyrin synthase from Pisum sativum converted 24,30-bisnor-2,3-oxidosqualene into a 3:1:0.2 mixture of 29,30-bisnor-β-amyrin, 29,30-bisnorgermanicol, and 29,30-bisnor-δ-amyrin. Further, enzyme reactions with [23-13C]- and [23,23-2H]-labeled isotopomers demonstrated that the cyclization did not proceed through formation of a lupanyl primary cation with a five-membered E-ring, but an electrophilic addition of the tetracyclic C-18 cation on to the terminal double bond directly generated a thermodynamically favored pentacyclic secondary cation with a less-strained six-membered E-ring. Interestingly, the formation of the three regioisomers suggested that the absence of the terminal methyl groups resulted in a structural perturbation in the folding conformation of the E-ring of the oleanyl cation at the active site of the enzyme. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja0490368 |