Loading…

Effects of volatile anesthetics on sarcolemmal calcium transport and sarcoplasmic reticulum calcium content in isolated myocytes

The surface membrane Ca(2+)-adenosine triphosphatase and Na(+)-Ca(2+) exchanger transport Ca(2+) out of the ventricular myocyte, competing for cytosolic Ca(2+) with the Ca(2+)-adenosine triphosphatase located in the sarcoplasmic reticulum. In this study the authors examined the effects of halothane,...

Full description

Saved in:
Bibliographic Details
Published in:Anesthesiology (Philadelphia) 2002-06, Vol.96 (6), p.1457-1464
Main Authors: HANNON, James D, CODY, Mark J
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The surface membrane Ca(2+)-adenosine triphosphatase and Na(+)-Ca(2+) exchanger transport Ca(2+) out of the ventricular myocyte, competing for cytosolic Ca(2+) with the Ca(2+)-adenosine triphosphatase located in the sarcoplasmic reticulum. In this study the authors examined the effects of halothane, isoflurane, and sevoflurane on Ca(2+) extrusion from the cell and sarcoplasmic reticulum Ca(2+) content. Single myocytes from the right ventricular free wall of adult male ferret hearts were isolated, loaded with the acetoxymethyl ester of the fluorescent Ca(2+) indicator fluo-3, and electrically stimulated at 0.25 Hz to reach a steady state level of intracellular Ca(2+) stores. The effects of halothane, isoflurane, and sevoflurane (1 minimum alveolar concentration) on the peak and rate of decline of the Ca(2+) transient induced by 10 mm caffeine were examined. The peak was used as an index of sarcoplasmic reticulum Ca(2+) content, and the rate of decline was used to monitor Ca(2+) extrusion from the cell. During control conditions, halothane reduced the Ca(2+) content of the sarcoplasmic reticulum, isoflurane maintained it, and sevoflurane caused it to increase. Halothane did not affect Ca(2+) extrusion from the cell, but both isoflurane and sevoflurane inhibited it. When Na(+)-Ca(2+) exchange was inhibited by ionic substitution, isoflurane and sevoflurane still reduced the rate of Ca(2+) efflux from the cell. However, when the sarcolemmal Ca(2+)-adenosine triphosphatase was inhibited by carboxyeosin, isoflurane and sevoflurane had no effect on Ca(2+) efflux. These results suggest that isoflurane and sevoflurane inhibit Ca(2+) transport from the cell via the sarcolemmal Ca(2+)-adenosine triphosphatase. This effect seems to counteract the decrease in Ca(2+) influx through sarcolemmal L-type Ca(2+) channels and maintains sarcoplasmic reticulum Ca(2+) stores.
ISSN:0003-3022
1528-1175
DOI:10.1097/00000542-200206000-00027