Loading…
Functional Mimicry of the Active Site of Carboxypeptidase A by a Molecular Imprinting Strategy: Cooperativity of an Amidinium and a Copper Ion in a Transition-State Imprinted Cavity Giving Rise to High Catalytic Activity
A model for the natural enzyme carboxypeptidase A was prepared by molecular imprinting in synthetic polymers. An unusually high activity and efficiency for carbonate hydrolysis could be obtained by imprinting with a stable transition-state analogue template and introducing an amidinium group and a C...
Saved in:
Published in: | Journal of the American Chemical Society 2004-06, Vol.126 (24), p.7452-7453 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A model for the natural enzyme carboxypeptidase A was prepared by molecular imprinting in synthetic polymers. An unusually high activity and efficiency for carbonate hydrolysis could be obtained by imprinting with a stable transition-state analogue template and introducing an amidinium group and a Cu2+ ion-binding site in a defined orientation to each other into the active site. With substrates having a very similar structure to the template, extraordinarily high enhancements of rates of 110 000-fold were obtained of catalyzed to uncatalyzed reaction k cat/k uncat . The efficiency k cat/K m of the molecularly imprinted catalysts compared to that of the nonimprinted control polymers containing the same functional groups was 790-fold higher, a clear indication of a very efficient imprinting procedure. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja048372l |