Loading…

A genetic and genomic analysis identifies a cluster of genes associated with hematopoietic cell turnover

Hematopoietic stem cells from different strains of mice vary widely with respect to their cell cycle activity. In the present study we used complementary genetic and genomic approaches to identify molecular pathways affecting this complex trait. We identified a major quantitative trait locus (QTL) a...

Full description

Saved in:
Bibliographic Details
Published in:Blood 2002-09, Vol.100 (6), p.2056-2062
Main Authors: de Haan, Gerald, Bystrykh, Leonid V., Weersing, Ellen, Dontje, Bert, Geiger, Hartmut, Ivanova, Natalia, Lemischka, Ihor R., Vellenga, Edo, Van Zant, Gary
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hematopoietic stem cells from different strains of mice vary widely with respect to their cell cycle activity. In the present study we used complementary genetic and genomic approaches to identify molecular pathways affecting this complex trait. We identified a major quantitative trait locus (QTL) associated with variation in cell proliferation in C57BL/6 and DBA/2 mice to a 10 centimorgan (cM) region on chromosome 11. A congenic mouse model confirmed that a genomic interval on chromosome 11 in isolation confers the proliferation phenotype. To detect candidate genes we performed subtractive hybridizations and gene arrays using cDNA from highly enriched stem cells from parental strains. Intriguingly, a disproportionate number of differentially expressed genes mapped to chromosome 11 and, more specifically, these transcripts occurred in 3 distinct clusters. The largest cluster colocalized exactly with the cell cycling QTL. Such clustering suggested the involvement of genetic variation that affects higher-order chromosomal organization. This hypothesis was reinforced by the fact that differentially expressed genes mapped to recombination “coldspots,” as a consequence of which clustered genes are collectively inherited. These findings suggest the functional interdependence of these closely linked genes. Our data are consistent with the hypothesis that this isolated cell cycle QTL does not result from a mutation in a single gene but rather is a consequence of variable expression of a collection of highly linked genes.
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2002-03-0808