Loading…

Effects of Flufenamic Acid on Smooth Muscle of the Carotid Artery Isolated from Spontaneously Hypertensive Rats

Endothelium-removed carotid artery strips from stroke-prone spontaneously hypertensive rats spontaneously developed a tonic myogenic contraction. Flufenamic acid reduced the resting tone observed during superfusion with Tyrode's solution, in a concentration-dependent manner. Flufenamic acid als...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Smooth Muscle Research 2002, Vol.38(1,2), pp.39-50
Main Authors: Shimamura, Keiichi, Zhou, Ming, Ito, Yasuko, Kimura, Shinichi, Zou, L.-B., Sekiguchi, Fumiko, Kitamura, Kenji, Sunano, Satoru
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Endothelium-removed carotid artery strips from stroke-prone spontaneously hypertensive rats spontaneously developed a tonic myogenic contraction. Flufenamic acid reduced the resting tone observed during superfusion with Tyrode's solution, in a concentration-dependent manner. Flufenamic acid also inhibited contractions produced by high-K+ solutions in a concentration-dependent manner. The resting membrane potential of smooth muscle cells in the artery was around -32 mV, with occasional oscillatory potentials. Flufenamic acid hyperpolarized the membrane in a concentration-dependent manner. The voltage-dependent outward currents recorded in isolated cells with micropipettes filled with high-K+ solution (holding potential, -60 mV) were enhanced by flufenamic acid and inhibited by tetraethylammonium. When the recording micropipette was filled with high Cs+ to inhibit the K+-current, depolarizing step pulses evoked nifedipine-sensitive inward currents. Flufenamic acid inhibited the inward currents. These results indicate that flufenamic acid inhibits the spontaneous active tone of the carotid artery by inhibiting L-type Ca2+-channels and possibly by membrane hyperpolarization through activation of the voltage-dependent K+-channels.
ISSN:0916-8737
1884-8796
DOI:10.1540/jsmr.38.39