Loading…

Cytosolic and stored calcium antagonistically control tyrosine phosphorylation of specific platelet proteins

Depletion of intracellular calcium stores appears to increase plasma membrane permeability for calcium by an as yet obscure mechanism. We found that the Ca2+ ionophore, A23187, and thrombin elevate cytosolic calcium ([Ca2+]i) equally and cause tyrosine phosphorylation of a 130-kDa protein and to a l...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1991-09, Vol.266 (25), p.16911-16916
Main Authors: VOSTAL, J. G, JACKSON, W. L, SHULMAN, N. R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Depletion of intracellular calcium stores appears to increase plasma membrane permeability for calcium by an as yet obscure mechanism. We found that the Ca2+ ionophore, A23187, and thrombin elevate cytosolic calcium ([Ca2+]i) equally and cause tyrosine phosphorylation of a 130-kDa protein and to a lesser extent 80- and 60-kDa proteins. Chelation of [Ca2+]i by 1,2-bis(2-aminophenoxyethane)-N,N,N',N'-tetraacetic acid/acetomethoxy ester decreased thrombin-induced tyrosine phosphorylation responses. These results suggested that [Ca2+]i elevation promotes tyrosine phosphorylation. Tyrosine phosphorylation persisted in the presence or absence of extracellular calcium after thrombin stimulation but subsided rapidly after A23187 addition if extracellular calcium was present. When Ca2+/ATPase activity, which is apparently required to maintain calcium stores, is inhibited by low temperature, tyrosine phosphorylation of the 130-kDa protein occurs. Rewarming platelets reverses tyrosine phosphorylation only if extracellular calcium is present. Thapsigargin, a calcium ATPase inhibitor, also induces tyrosine phosphorylation of the 130-kDa protein and prevents dephosphorylation of this protein when added prior to rewarming. These observations suggest that homeostatic levels of calcium in storage compartments favor tyrosine dephosphorylation of specific proteins. Thus the levels of [Ca2+]i and stored calcium appear to control tyrosine phosphorylation antagonistically. Tyrosine phosphorylation may play a role in regulating calcium channel function.
ISSN:0021-9258
1083-351X
DOI:10.1016/s0021-9258(18)55389-8