Loading…
Uniqueness of reconstruction of multiphase morphologies from two-point correlation functions
The restoration of the spatial structure of heterogeneous media, such as composites, porous materials, microemulsions, ceramics, or polymer blends from two-point correlation functions, is a problem of relevance to several areas of science. In this contribution we revisit the question of the uniquene...
Saved in:
Published in: | Physical review letters 2002-09, Vol.89 (13), p.135501-135501, Article 135501 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The restoration of the spatial structure of heterogeneous media, such as composites, porous materials, microemulsions, ceramics, or polymer blends from two-point correlation functions, is a problem of relevance to several areas of science. In this contribution we revisit the question of the uniqueness of the restoration problem. We present numerical evidence that periodic, piecewise uniform structures with smooth boundaries are completely specified by their two-point correlation functions, up to a translation and, in some cases, inversion. We discuss the physical relevance of the results. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.89.135501 |