Loading…

The dipole moment of cytochrome c

Vertebrate cytochromes c and the cytochromes c of insects and plants have, on average, dipole moments of 320 and 340 debye, respectively. The direction of the dipole vector with respect to the haem plane, at the solvent-accessible edge of which electron transfer presumably takes place, is conserved...

Full description

Saved in:
Bibliographic Details
Published in:Molecular biology and evolution 1991-07, Vol.8 (4), p.545-558
Main Authors: KOPPENOL, W. H, RUSH, J. D, MILLS, J. D, MARGOLIASH, E
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Vertebrate cytochromes c and the cytochromes c of insects and plants have, on average, dipole moments of 320 and 340 debye, respectively. The direction of the dipole vector with respect to the haem plane, at the solvent-accessible edge of which electron transfer presumably takes place, is conserved in these two groups--at 32 degrees +/- 7 degrees and 22 degrees +/- 10 degrees, respectively. The variation of dipole orientations and magnitudes observed in these species is compared with the results of a model in which charge distributions occur randomly. Since this model does not generate the observed charge asymmetries of the various cytochromes c, it is concluded that the dipole moment of cytochrome c is a feature that is evolutionarily conserved, apparently because it has an important influence on the interaction of this mobile electron carrier with its physiological electron donors and acceptors in the intermembrane space of mitochondria.
ISSN:0737-4038
1537-1719
1537-1719
DOI:10.1093/oxfordjournals.molbev.a040659