Loading…
Secreted MD-2 is a Large Polymeric Protein That Efficiently Confers Lipopolysaccharide Sensitivity to Toll-like Receptor 4
Toll-like receptor 4 (TLR4), the principal signaling receptor for lipopolysaccharide (LPS) in mammals, requires the binding of MD-2 to its extracellular domain for maximal responsiveness. MD-2 contains a leader sequence but lacks a transmembrane domain, and we asked whether it is secreted into the m...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2001-10, Vol.98 (21), p.12156-12161 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Toll-like receptor 4 (TLR4), the principal signaling receptor for lipopolysaccharide (LPS) in mammals, requires the binding of MD-2 to its extracellular domain for maximal responsiveness. MD-2 contains a leader sequence but lacks a transmembrane domain, and we asked whether it is secreted into the medium as an active protein. As a source of secreted MD-2 (sMD-2), we used culture supernatants from cells stably transduced with epitope-tagged human MD-2. We show that sMD-2 exists as a heterogeneous collection of large disulfide-linked oligomers formed from stable dimeric subunits and that concentrations of sMD-2 as low as 50 pM enhance the responsiveness of TLR4 reporter cells to LPS. An MD-2-like activity is also released by monocyte-derived dendritic cells from normal donors. When coexpressed, TLR4 indiscriminately associates in the endoplasmic reticulum/cis Golgi with differentsized oligomers of MD-2, and excess MD-2 is secreted into the medium. We conclude that normal and transfected cells secrete a soluble form of MD-2 that binds with high affinity to TLR4 and that could play a role in regulating responses to LPS and other pathogen-derived substances in vivo. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.211445098 |