Loading…

Synchronized cyclic capillary electrophoresis using channels arranged in a triangle and low voltages

Synchronized cyclic capillary electrophoresis (SCCE) makes use of a closed loop separation channel by which the same sample can be separated during many cycles. This enables the repeated use of the same voltage for separations such that a high total voltage, and thus high efficiency, is obtained for...

Full description

Saved in:
Bibliographic Details
Published in:Fresenius' journal of analytical chemistry 2001-09, Vol.371 (2), p.195-201
Main Authors: Manz, A, Bousse, L, Chow, A, Metha, T B, Kopf-Sill, A, Parce, J W
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Synchronized cyclic capillary electrophoresis (SCCE) makes use of a closed loop separation channel by which the same sample can be separated during many cycles. This enables the repeated use of the same voltage for separations such that a high total voltage, and thus high efficiency, is obtained for the synchronized components. This can be accomplished by using any type of polygon geometry for the separation channel; and calculations of the available field and number of connections needed for polygons from 3 to 5 sides are presented. Triangular designs have the advantage of using the lowest number of wells. Such designs are described, with two additional features compared to that of earlier work: 1. voltage connections that are much shallower than the separation channel, to reduce losses and dispersion at the intersections; and 2. corners that are narrower than the separation channels to reduce dispersion in the turns.Experimental data is presented for the separation of a mixture of amino acids, and for a DNA separation in a polymeric sieving matrix. The DNA separation is most sensitive to the corner dispersion problem, which reduces the observed efficiency for that separation.
ISSN:0937-0633
1432-1130
DOI:10.1007/s002160100958