Loading…

Induction of type 3 iodothyronine deiodinase by nerve injury in the rat peripheral nervous system

Thyroid hormones are essential for the development and repair of the peripheral nervous system. The type 2 deiodinase, which is responsible for the activation of T(4) into T(3), is induced in injured sciatic nerve. To obtain information on the type 3 deiodinase (D3) responsible for the degradation o...

Full description

Saved in:
Bibliographic Details
Published in:Endocrinology (Philadelphia) 2001-12, Vol.142 (12), p.5190-5197
Main Authors: Li, W W, Le Goascogne, C, Ramaugé, M, Schumacher, M, Pierre, M, Courtin, F
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Thyroid hormones are essential for the development and repair of the peripheral nervous system. The type 2 deiodinase, which is responsible for the activation of T(4) into T(3), is induced in injured sciatic nerve. To obtain information on the type 3 deiodinase (D3) responsible for the degradation of thyroid hormones, we looked for its expression (mRNA and activity) in the sciatic nerve after injury. D3 was undetectable in the intact sciatic nerve of adult rats, but was rapidly and highly increased in the distal and proximal segments after nerve lesion. After cryolesion, D3 up-regulation disappeared after 3 d in the proximal segment, whereas it was sustained for 10 d in the distal segment, then declined to reach basal levels after 28 d, when functional recovery was completed. After a transsection preventing the nerve regeneration, up-regulation of D3 persisted up to 28 d at high levels in the distal segment. D3 was expressed in peripheral connective sheaths and in the internal endoneural compartment. D3 mRNA was inducible by 12-O-tetradecanoylphorbol-13-acetate in cultured fibroblasts or Schwann cells. In conclusion, induction of D3 in the peripheral nervous system after injury may play an important role during the regeneration process by adjusting intracellular T(3) levels.
ISSN:0013-7227
DOI:10.1210/en.142.12.5190