Loading…
Fas Ligand Engagement of Resident Peritoneal Macrophages In Vivo Induces Apoptosis and the Production of Neutrophil Chemotactic Factors
Fas ligand (FasL) is a potent proapoptotic type-II transmembrane protein that can cause cell death in Fas+ target populations. Despite the presumed "silent" nature of apoptotic cell death, forced expression of FasL can induce a dramatic inflammatory response. To elucidate the in vivo mecha...
Saved in:
Published in: | The Journal of immunology (1950) 2001-12, Vol.167 (11), p.6217-6224 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fas ligand (FasL) is a potent proapoptotic type-II transmembrane protein that can cause cell death in Fas+ target populations. Despite the presumed "silent" nature of apoptotic cell death, forced expression of FasL can induce a dramatic inflammatory response. To elucidate the in vivo mechanism(s) linking FasL and inflammation, we used a membrane-bound cell-free form of FasL (mFasL-vesicle preparation (VP)). We found that i.p. injection of FasL-microvesicles led to the rapid activation and subsequent demise of Mac1(high) resident peritoneal macrophages. Apoptosis of Mac1(high) peritoneal macrophages was observed within 0.5 h of mFasL-VP injection and correlated with the detection of increased macrophage inflammatory protein (MIP)-2 levels in peritoneal lavage fluid as well as induced RNA expression of IL-1beta, MIP-2, MIP-1alpha, and MIP-1beta. In vitro culture of purified peritoneal populations identified Mac1(high) cells as the major cytokine/chemokine producers in response to mFasL-VP. Purified Mac1(high) cells exposed to FasL could restore the ability of Fas-deficient mice to mount an inflammatory response. Our data demonstrate that the FasL-mediated inflammatory response starts with the production of proinflammatory mediators by preapoptotic resident tissue macrophages and suggest a general mechanism responsible for neutrophil inflammation seen in cases of FasL-expressing allografts. |
---|---|
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.167.11.6217 |