Loading…
Skeletal Muscle Ischaemia-reperfusion Injury: Further Characterisation of a Rodent Model
Background: postischaemic damage in skeletal muscle may be reflected in changes to microvascular blood flow, vascular permeability, and subsequent tissue viability. Previous preclinical studies have not addressed all these parameters, and have not used periods of ischaemia and reperfusion relevant t...
Saved in:
Published in: | European journal of vascular and endovascular surgery 2001-12, Vol.22 (6), p.523-527 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background: postischaemic damage in skeletal muscle may be reflected in changes to microvascular blood flow, vascular permeability, and subsequent tissue viability. Previous preclinical studies have not addressed all these parameters, and have not used periods of ischaemia and reperfusion relevant to the clinical setting. This study aimed to develop an animal model hindlimb ischaemia-reperfusion to simulate acute lower limb ischaemia. Methods: a rodent model of hindlimb tourniquet-induced ischaemia-reperfusion was employed. Gastrocnemius muscle blood flow (GMBF; radio-labelled microspheres), oedema (GMO; using a wet:dry ratio method) and viability (GMV; histochemistry and computerised planimetry) were quantified. Results: 6 h ischaemia per seresulted in neither muscle oedema nor loss of viability, but these changes were apparent following 4 h reperfusion. Early reperfusion at 10 min demonstrated low reflow, with GMBF improving at 120 min before declining sharply at 240 min. Conclusion: prolonged hindlimb ischaemia followed by reperfusion in this rodent model caused significant reductions in gastrocnemius muscle blood flow, associated with muscle oedema and necrosis. These three parameters have not been previously reported together in the same model. This reproducible model could be used in the evaluation of potential therapeutic intervention strategies aimed at ameliorating skeletal muscle reperfusion injury. |
---|---|
ISSN: | 1078-5884 1532-2165 |
DOI: | 10.1053/ejvs.2001.1467 |