Loading…
Effect of light-harvesting complex II on ion transport across model lipid membranes
The effect of the incorporation of the major light-harvesting complex of photosystem II (LHCII) to planar bilayer lipid membranes (BLMs) formed from soybean asolectin and unilamellar small liposomes formed from egg-yolk phosphatidylcholine on ion transport across the lipid bilayer has been studied....
Saved in:
Published in: | Journal of photochemistry and photobiology. B, Biology Biology, 2000-06, Vol.56 (1), p.12-18 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The effect of the incorporation of the major light-harvesting complex of photosystem II (LHCII) to planar bilayer lipid membranes (BLMs) formed from soybean asolectin and unilamellar small liposomes formed from egg-yolk phosphatidylcholine on ion transport across the lipid bilayer has been studied. The specific conductivity of the BLM rises from 5.2±0.8×10
−9 up to 510×10
−9 O
−1cm
−2 upon the incorporation of LHCII. The conductivity of the membrane with LHCII depends upon the ionic strength of the bathing solution and is higher by a factor of five when the KCl concentration increases from 0.02 to 0.22 M. Such a strong effect has not been observed in the same system without LHCII. The liposome model is also applied to analyse the effect of LHCII on the bilayer permeability to protons. Unilamellar liposomes with a diameter less than 50 nm have been prepared, containing (trapped inside) Neutral Red, a pigment sensitive to proton concentration. A gradient of protons on the membrane is generated by the acidification of the liposome suspension and spectral changes of Neutral Red are recorded in time, reflecting the penetration of protons into the internal space of liposomes. Two components of proton permeation across liposome membranes are observed: a fast one (proceeding within seconds) and a slow one (operating on the time scale of minutes). The rate of both components of proton transport across LHCII-containing membranes is higher than for liposomes alone. The enhancement effect of LHCII on the ion transport across the lipid membrane is discussed in terms of aggregation of the pigment–protein complexes. The possible physiological importance of such an effect in controlling ion permeability across the thylakoid membrane is discussed. |
---|---|
ISSN: | 1011-1344 1873-2682 |
DOI: | 10.1016/S1011-1344(00)00050-6 |