Loading…

Shape instability of a biomembrane driven by a local softening of the underlying actin cortex

We present a theory showing that local shape instabilities of composite biological membranes, consisting of a lipid bilayer and an underlying actin cortex, can be triggered by a local softening of the membrane-associated cytoskeleton. A membrane containing such cortical defects can form blisters or...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2000-09, Vol.62 (3 Pt B), p.3974-3985
Main Authors: Boulbitch, A, Simson, R, Simson, D A, Merkel, R, Häckl, W, Bärmann, M, Sackmann, E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a theory showing that local shape instabilities of composite biological membranes, consisting of a lipid bilayer and an underlying actin cortex, can be triggered by a local softening of the membrane-associated cytoskeleton. A membrane containing such cortical defects can form blisters or invaginations, depending on external conditions. The theoretical predictions agree with observations provided by two sets of experiments: (i) microscopic observations of shape changes of giant vesicles with underlying shells of a thin actin network show the formation of local blisters and (ii) micropipet aspiration experiments of Dictyostelium discoideum cells in which we observed the formation of blisters in the aspirated cell part. In the latter experiments, the existence of a hole in the underlying cortex is confirmed by observation of the entrance of cell organelles into the blister. Our model may also be applied to the formation of lobopodia, fast-growing cell protrusions that play an important role in the locomotion and spreading of biological cells.
ISSN:1063-651X
1095-3787
DOI:10.1103/PhysRevE.62.3974