Loading…

Reproduction numbers and thresholds in stochastic epidemic models I. Homogeneous populations

We compare threshold results for the deterministic and stochastic versions of the homogeneous SI model with recruitment, death due to the disease, a background death rate, and transmission rate βcXY / N. If an infective is introduced into a population of susceptibles, the basic reproduction number,...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical biosciences 1991-12, Vol.107 (2), p.161-186
Main Authors: Jacquez, John A., O'Neill, Philip
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We compare threshold results for the deterministic and stochastic versions of the homogeneous SI model with recruitment, death due to the disease, a background death rate, and transmission rate βcXY / N. If an infective is introduced into a population of susceptibles, the basic reproduction number, R 0, plays a fundamental role for both, though the threshold results differ somewhat. For the deterministic model, no epidemic can occur if R 0 ⩽ 1 and an epidemic occurs if R 0 > 1. For the stochastic model we find that on average, no epidemic will occur if R 0 ⩽ 1. If R 0 > 1, there is a finite probability, but less than 1, that an epidemic will develop and eventuate in an endemic quasi-equilibrium. However, there is also a finite probability of extinction of the infection, and the probability of extinction decreases as R 0 increases above 1.
ISSN:0025-5564
1879-3134
DOI:10.1016/0025-5564(91)90003-2