Loading…

A model for tissue-specific inducible insulin-like growth factor-I (IGF-I) inactivation to determine the physiological role of liver-derived IGF-I

Insulin-like growth factor-I (IGF-I) has important growthpromoting and metabolic effects and is expressed in virtually every tissue of the body. The highest expression is found in the liver, but the physiological role of liver-derived IGF-I is unknown. It has been difficult to separate the endocrine...

Full description

Saved in:
Bibliographic Details
Published in:Endocrine 2002, Vol.19 (3), p.249-256
Main Authors: Sjögren, Klara, Jansson, John-Olov, Isaksson, Olle G P, Ohlsson, Claes
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Insulin-like growth factor-I (IGF-I) has important growthpromoting and metabolic effects and is expressed in virtually every tissue of the body. The highest expression is found in the liver, but the physiological role of liver-derived IGF-I is unknown. It has been difficult to separate the endocrine effects of liver-derived IGF-I from the autocrine/paracrine effects of locally produced IGF-I in peripheral tissues. Therefore, we have developed a mouse model with a liver-specific inducible deletion of the IGF-I gene (LI-IGF-I-/- mouse). The LI-IGF-I-/- mouse has dramatically reduced (>80%) serum IGF-I levels, demonstrating that the major part of serum IGF-I is liver-derived. Surprisingly, LI-IGFI -/- mice demonstrate a normal appendicular skeletal growth up to at least 12 mo of age despite the dramatic decrease in circulating IGF-I levels, indicating that liver-derived IGF-I is not required for appendicular skeletal growth. However, the adult axial skeletal growth is reduced in the LI-IGF-I-/- mice. Furthermore, the amount of cortical bone is reduced due to decreased radial growth of the cortical bone, while the trabecular bone mineral density is unchanged in the LI-IGFI -/- mice. The decreased levels of circulating IGF-I are associated with increased serum levels of growth hormone (GH), indicating a role for liver-derived IGFI in the negative-feedback regulation of GH secretion. Measurements of factors regulating GH secretion in the pituitary and in the hypothalamus revealed an increased expression of GH-releasing-hormone (GHRH) and GHsecretagogue (GHS) receptors in the pituitary of LI-IGFI -/- mice. This in turn results in an increased sensitivity to systemically administered GHRH and GHS, demonstrating that the regulatory action of liver-derived IGF-I on GH secretion is at the pituitary rather than at the hypothalamic level. The liver is an important metabolic organ and LI-IGF-I-/- mice are markedly hyperinsulinemic and yet normoglycemic, consistent with an adequately compensated insulin resistance. Interestingly, LI-IGF-I-/- mice display a reduced age-dependent fat mass accumulation compared with control mice. Furthermore, LI-IGF-I-/- mice have increased blood pressure attributable to increased peripheral resistance indicating a role for liver-derived IGF-I in the regulation of blood pressure. In conclusion, liver-derived IGF-I is important for carbohydrate and lipid metabolism and for the regulation of GH secretion at the pituitary level. Furthermore, i
ISSN:1355-008X
DOI:10.1385/endo:19:3:249