Loading…

Systematic study of nuclear Overhauser effects vis-a-vis local helical parameters, sugar puckers, and glycosidic torsions in B DNA; insensitivity of NOE to local transitions in B DNA oligonucleotides due to internal structural compensations

A method has been developed to solve structures of DNA oligomers in solution from the experimental NOE data. The method is a combination of two approaches: (1) full matrix NOESY simulations and (2) conformational calculations of DNA double helix based on generalized helical parameters. The process o...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 1992-04, Vol.31 (16), p.3918-3930
Main Authors: Ul'yanov, N. B, Gorin, A. A, Zhurkin, V. B, Chen, Ban Chin, Sarma, Mukti H, Sarma, Ramaswamy H
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A method has been developed to solve structures of DNA oligomers in solution from the experimental NOE data. The method is a combination of two approaches: (1) full matrix NOESY simulations and (2) conformational calculations of DNA double helix based on generalized helical parameters. The process of the refinement of a solution structure does not involve NMR-derived interproton distance constraints; rather it consists of a direct fitting of a structure to the experimental NOE data, a weighted sum of energy, and R factor being under minimization. A helical parameters-based generation of DNA forms makes it possible to organize the search for the optimal structure more effectively, systematically varying starting conformations. The method has been used to calculate a structure for the self-complementary DNA hexamer GGATCC, which is consistent with the available experimental data. The structure belongs to the B family of forms, although the local structural heterogeneity is very strong. Sugar puckers vary from O4'-exo to C3'-exo; helical steps are open with different magnitudes toward the minor groove. Next, we have addressed the question of how uniquely the structure is defined by the existing NMR data. Different structural parameters have been systematically varied, and their effect on individual NOE's and the R factor has been studied. Two energetically conjugated parameters, sugar puckers and glycosidic angles, can be determined very reliably, because of the strong dependences of the intraresidue H6/H8 to H2'/H2''/H3' NOE's. In contrast, the local helical conformation of DNA and the geometry of base pairs proved to be underdetermined by the existing NOE information, because the effect of any helical parameter on interproton distances can be compensated by the concerted changes in other parameters.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi00131a005