Loading…

Development of Agrobacterium tumefaciens C58-induced plant tumors and impact on host shoots are controlled by a cascade of jasmonic acid, auxin, cytokinin, ethylene and abscisic acid

The development of Agrobacterium tumefaciens-induced plant tumors primarily depends on the excessive production of auxin and cytokinin by enzymes encoded on T-DNA genes integrated into the plant genome. The aim of the present study was to investigate the involvement of additional phytohormone signal...

Full description

Saved in:
Bibliographic Details
Published in:Planta 2003-01, Vol.216 (3), p.512-522
Main Authors: Veselov, Dmitry, Langhans, Markus, Hartung, Wolfram, Aloni, Roni, Feussner, Ivo, Götz, Claudia, Veselova, Svetlana, Schlomski, Stefan, Dickler, Christoph, Bächmann, Knut, Ullrich, Cornelia I.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c376t-19c898ceb2fe595be8a06a92e7c362edad1208668ddd8537a234a922a4a013fe3
cites
container_end_page 522
container_issue 3
container_start_page 512
container_title Planta
container_volume 216
creator Veselov, Dmitry
Langhans, Markus
Hartung, Wolfram
Aloni, Roni
Feussner, Ivo
Götz, Claudia
Veselova, Svetlana
Schlomski, Stefan
Dickler, Christoph
Bächmann, Knut
Ullrich, Cornelia I.
description The development of Agrobacterium tumefaciens-induced plant tumors primarily depends on the excessive production of auxin and cytokinin by enzymes encoded on T-DNA genes integrated into the plant genome. The aim of the present study was to investigate the involvement of additional phytohormone signals in the vascularization required for rapid tumor proliferation. In stem tumors of Ricinus communis L., free auxin and zeatin riboside concentrations increased within 2 weeks to 15-fold the concentrations in control stem tissue. Auxin and cytokinin immunolocalization revealed the highest concentrations within and around tumor vascular bundles with concentration gradients. The time-course of changes in free auxin concentration in roots was inversely correlated with that in the tumors. The high ethylene emission induced by increased auxin- and cytokinin correlated with a 36-fold accumulation of abscisic acid in tumors. Ethylene emitted from tumors and exogenously applied ethylene caused an increase in abscisic acid concentrations also in the host leaves, with a diminution in leaf water vapor conductance. Jasmonic acid concentration reached a maximum already within the first week of bacterial infection. A wound effect could be excluded. The results demonstrate the concerted interaction of a cascade of transiently induced, non-T-DNA-encoded phytohormones jasmonic acid, ethylene and abscisic acid with T-DNA-encoded auxin and zeatin riboside plus trans-zeatin, all of which are required for successful plant tumor vascularization and development together with inhibition of host plant growth.
doi_str_mv 10.1007/s00425-002-0883-5
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_72945674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23387350</jstor_id><sourcerecordid>23387350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-19c898ceb2fe595be8a06a92e7c362edad1208668ddd8537a234a922a4a013fe3</originalsourceid><addsrcrecordid>eNpdkU2O1DAQhSMEYnoGDsACZCENqwlU7Dh2lqPmVxqJDawjx67QbhI72A6iL8b5cOiIkVi5pPe9qnK9onhWwesKQLyJADXlJQAtQUpW8gfFrqoZLSnU8mGxA8g1tIxfFJcxHgGyKMTj4qKinAKr613x-y3-xNHPE7pE_EBuvwXfK50w2GUiaZlwUNqii2TPZWmdWTQaMo8q41n1IRLlDLHTnE3EO3LwMZF48D5lJSDR3qXgxzG7-hNRRKuolcF11lHFyTurSZ5gbohafll3Q_Qp-e_WrSWmw2lEh39HqD5qGzf6SfFoUGPEp9t7VXx9_-7L_mN59_nDp_3tXamZaFJZtVq2UmNPB-Qt71EqaFRLUWjWUDTKVBRk00hjjORMKMrqLFNVK6jYgOyqeHXuOwf_Y8GYuslGjWP-P_oldoK2NW9EncGX_4FHvwSXd-tEPrQE1ooMVWdIBx9jwKGbg51UOHUVdGui3TnRLifarYl2PHtebI2XfkJz79gizMD1BqyXHYegXL7TPVdzCXmBzD0_c8eYfPinU8akYBzYH_lytMs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734480397</pqid></control><display><type>article</type><title>Development of Agrobacterium tumefaciens C58-induced plant tumors and impact on host shoots are controlled by a cascade of jasmonic acid, auxin, cytokinin, ethylene and abscisic acid</title><source>Springer Link</source><source>JSTOR</source><creator>Veselov, Dmitry ; Langhans, Markus ; Hartung, Wolfram ; Aloni, Roni ; Feussner, Ivo ; Götz, Claudia ; Veselova, Svetlana ; Schlomski, Stefan ; Dickler, Christoph ; Bächmann, Knut ; Ullrich, Cornelia I.</creator><creatorcontrib>Veselov, Dmitry ; Langhans, Markus ; Hartung, Wolfram ; Aloni, Roni ; Feussner, Ivo ; Götz, Claudia ; Veselova, Svetlana ; Schlomski, Stefan ; Dickler, Christoph ; Bächmann, Knut ; Ullrich, Cornelia I.</creatorcontrib><description>The development of Agrobacterium tumefaciens-induced plant tumors primarily depends on the excessive production of auxin and cytokinin by enzymes encoded on T-DNA genes integrated into the plant genome. The aim of the present study was to investigate the involvement of additional phytohormone signals in the vascularization required for rapid tumor proliferation. In stem tumors of Ricinus communis L., free auxin and zeatin riboside concentrations increased within 2 weeks to 15-fold the concentrations in control stem tissue. Auxin and cytokinin immunolocalization revealed the highest concentrations within and around tumor vascular bundles with concentration gradients. The time-course of changes in free auxin concentration in roots was inversely correlated with that in the tumors. The high ethylene emission induced by increased auxin- and cytokinin correlated with a 36-fold accumulation of abscisic acid in tumors. Ethylene emitted from tumors and exogenously applied ethylene caused an increase in abscisic acid concentrations also in the host leaves, with a diminution in leaf water vapor conductance. Jasmonic acid concentration reached a maximum already within the first week of bacterial infection. A wound effect could be excluded. The results demonstrate the concerted interaction of a cascade of transiently induced, non-T-DNA-encoded phytohormones jasmonic acid, ethylene and abscisic acid with T-DNA-encoded auxin and zeatin riboside plus trans-zeatin, all of which are required for successful plant tumor vascularization and development together with inhibition of host plant growth.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-002-0883-5</identifier><identifier>PMID: 12520344</identifier><identifier>CODEN: PLANAB</identifier><language>eng</language><publisher>Berlin: Springer-Verlag</publisher><subject>Abscisic Acid - metabolism ; Abscisic Acid - pharmacology ; Agrobacterium tumefaciens - growth &amp; development ; Auxins ; Bacterial diseases ; Cyclopentanes - metabolism ; Cytokinins ; Cytokinins - metabolism ; Cytokinins - pharmacology ; Deoxyribonucleic acid ; DNA ; Ethylenes - metabolism ; Immunohistochemistry ; Indoleacetic Acids - metabolism ; Insulin antibodies ; Leaves ; Microscopy, Immunoelectron ; Oxylipins ; Plant growth ; Plant growth regulators ; Plant Growth Regulators - metabolism ; Plant Growth Regulators - pharmacology ; Plant roots ; Plant Roots - drug effects ; Plant Roots - growth &amp; development ; Plant Roots - microbiology ; Plant Shoots - chemistry ; Plant Shoots - growth &amp; development ; Plant Shoots - microbiology ; Plant Tumors - microbiology ; Plants ; Ricinus - chemistry ; Ricinus - growth &amp; development ; Ricinus - microbiology ; Sieve elements ; Time Factors ; Tumors ; Water vapor ; Xylem</subject><ispartof>Planta, 2003-01, Vol.216 (3), p.512-522</ispartof><rights>Springer-Verlag Berlin Heidelberg 2003</rights><rights>2003 INIST-CNRS</rights><rights>Springer-Verlag 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-19c898ceb2fe595be8a06a92e7c362edad1208668ddd8537a234a922a4a013fe3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23387350$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23387350$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14580448$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12520344$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Veselov, Dmitry</creatorcontrib><creatorcontrib>Langhans, Markus</creatorcontrib><creatorcontrib>Hartung, Wolfram</creatorcontrib><creatorcontrib>Aloni, Roni</creatorcontrib><creatorcontrib>Feussner, Ivo</creatorcontrib><creatorcontrib>Götz, Claudia</creatorcontrib><creatorcontrib>Veselova, Svetlana</creatorcontrib><creatorcontrib>Schlomski, Stefan</creatorcontrib><creatorcontrib>Dickler, Christoph</creatorcontrib><creatorcontrib>Bächmann, Knut</creatorcontrib><creatorcontrib>Ullrich, Cornelia I.</creatorcontrib><title>Development of Agrobacterium tumefaciens C58-induced plant tumors and impact on host shoots are controlled by a cascade of jasmonic acid, auxin, cytokinin, ethylene and abscisic acid</title><title>Planta</title><addtitle>Planta</addtitle><description>The development of Agrobacterium tumefaciens-induced plant tumors primarily depends on the excessive production of auxin and cytokinin by enzymes encoded on T-DNA genes integrated into the plant genome. The aim of the present study was to investigate the involvement of additional phytohormone signals in the vascularization required for rapid tumor proliferation. In stem tumors of Ricinus communis L., free auxin and zeatin riboside concentrations increased within 2 weeks to 15-fold the concentrations in control stem tissue. Auxin and cytokinin immunolocalization revealed the highest concentrations within and around tumor vascular bundles with concentration gradients. The time-course of changes in free auxin concentration in roots was inversely correlated with that in the tumors. The high ethylene emission induced by increased auxin- and cytokinin correlated with a 36-fold accumulation of abscisic acid in tumors. Ethylene emitted from tumors and exogenously applied ethylene caused an increase in abscisic acid concentrations also in the host leaves, with a diminution in leaf water vapor conductance. Jasmonic acid concentration reached a maximum already within the first week of bacterial infection. A wound effect could be excluded. The results demonstrate the concerted interaction of a cascade of transiently induced, non-T-DNA-encoded phytohormones jasmonic acid, ethylene and abscisic acid with T-DNA-encoded auxin and zeatin riboside plus trans-zeatin, all of which are required for successful plant tumor vascularization and development together with inhibition of host plant growth.</description><subject>Abscisic Acid - metabolism</subject><subject>Abscisic Acid - pharmacology</subject><subject>Agrobacterium tumefaciens - growth &amp; development</subject><subject>Auxins</subject><subject>Bacterial diseases</subject><subject>Cyclopentanes - metabolism</subject><subject>Cytokinins</subject><subject>Cytokinins - metabolism</subject><subject>Cytokinins - pharmacology</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Ethylenes - metabolism</subject><subject>Immunohistochemistry</subject><subject>Indoleacetic Acids - metabolism</subject><subject>Insulin antibodies</subject><subject>Leaves</subject><subject>Microscopy, Immunoelectron</subject><subject>Oxylipins</subject><subject>Plant growth</subject><subject>Plant growth regulators</subject><subject>Plant Growth Regulators - metabolism</subject><subject>Plant Growth Regulators - pharmacology</subject><subject>Plant roots</subject><subject>Plant Roots - drug effects</subject><subject>Plant Roots - growth &amp; development</subject><subject>Plant Roots - microbiology</subject><subject>Plant Shoots - chemistry</subject><subject>Plant Shoots - growth &amp; development</subject><subject>Plant Shoots - microbiology</subject><subject>Plant Tumors - microbiology</subject><subject>Plants</subject><subject>Ricinus - chemistry</subject><subject>Ricinus - growth &amp; development</subject><subject>Ricinus - microbiology</subject><subject>Sieve elements</subject><subject>Time Factors</subject><subject>Tumors</subject><subject>Water vapor</subject><subject>Xylem</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpdkU2O1DAQhSMEYnoGDsACZCENqwlU7Dh2lqPmVxqJDawjx67QbhI72A6iL8b5cOiIkVi5pPe9qnK9onhWwesKQLyJADXlJQAtQUpW8gfFrqoZLSnU8mGxA8g1tIxfFJcxHgGyKMTj4qKinAKr613x-y3-xNHPE7pE_EBuvwXfK50w2GUiaZlwUNqii2TPZWmdWTQaMo8q41n1IRLlDLHTnE3EO3LwMZF48D5lJSDR3qXgxzG7-hNRRKuolcF11lHFyTurSZ5gbohafll3Q_Qp-e_WrSWmw2lEh39HqD5qGzf6SfFoUGPEp9t7VXx9_-7L_mN59_nDp_3tXamZaFJZtVq2UmNPB-Qt71EqaFRLUWjWUDTKVBRk00hjjORMKMrqLFNVK6jYgOyqeHXuOwf_Y8GYuslGjWP-P_oldoK2NW9EncGX_4FHvwSXd-tEPrQE1ooMVWdIBx9jwKGbg51UOHUVdGui3TnRLifarYl2PHtebI2XfkJz79gizMD1BqyXHYegXL7TPVdzCXmBzD0_c8eYfPinU8akYBzYH_lytMs</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>Veselov, Dmitry</creator><creator>Langhans, Markus</creator><creator>Hartung, Wolfram</creator><creator>Aloni, Roni</creator><creator>Feussner, Ivo</creator><creator>Götz, Claudia</creator><creator>Veselova, Svetlana</creator><creator>Schlomski, Stefan</creator><creator>Dickler, Christoph</creator><creator>Bächmann, Knut</creator><creator>Ullrich, Cornelia I.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20030101</creationdate><title>Development of Agrobacterium tumefaciens C58-induced plant tumors and impact on host shoots are controlled by a cascade of jasmonic acid, auxin, cytokinin, ethylene and abscisic acid</title><author>Veselov, Dmitry ; Langhans, Markus ; Hartung, Wolfram ; Aloni, Roni ; Feussner, Ivo ; Götz, Claudia ; Veselova, Svetlana ; Schlomski, Stefan ; Dickler, Christoph ; Bächmann, Knut ; Ullrich, Cornelia I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-19c898ceb2fe595be8a06a92e7c362edad1208668ddd8537a234a922a4a013fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Abscisic Acid - metabolism</topic><topic>Abscisic Acid - pharmacology</topic><topic>Agrobacterium tumefaciens - growth &amp; development</topic><topic>Auxins</topic><topic>Bacterial diseases</topic><topic>Cyclopentanes - metabolism</topic><topic>Cytokinins</topic><topic>Cytokinins - metabolism</topic><topic>Cytokinins - pharmacology</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Ethylenes - metabolism</topic><topic>Immunohistochemistry</topic><topic>Indoleacetic Acids - metabolism</topic><topic>Insulin antibodies</topic><topic>Leaves</topic><topic>Microscopy, Immunoelectron</topic><topic>Oxylipins</topic><topic>Plant growth</topic><topic>Plant growth regulators</topic><topic>Plant Growth Regulators - metabolism</topic><topic>Plant Growth Regulators - pharmacology</topic><topic>Plant roots</topic><topic>Plant Roots - drug effects</topic><topic>Plant Roots - growth &amp; development</topic><topic>Plant Roots - microbiology</topic><topic>Plant Shoots - chemistry</topic><topic>Plant Shoots - growth &amp; development</topic><topic>Plant Shoots - microbiology</topic><topic>Plant Tumors - microbiology</topic><topic>Plants</topic><topic>Ricinus - chemistry</topic><topic>Ricinus - growth &amp; development</topic><topic>Ricinus - microbiology</topic><topic>Sieve elements</topic><topic>Time Factors</topic><topic>Tumors</topic><topic>Water vapor</topic><topic>Xylem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veselov, Dmitry</creatorcontrib><creatorcontrib>Langhans, Markus</creatorcontrib><creatorcontrib>Hartung, Wolfram</creatorcontrib><creatorcontrib>Aloni, Roni</creatorcontrib><creatorcontrib>Feussner, Ivo</creatorcontrib><creatorcontrib>Götz, Claudia</creatorcontrib><creatorcontrib>Veselova, Svetlana</creatorcontrib><creatorcontrib>Schlomski, Stefan</creatorcontrib><creatorcontrib>Dickler, Christoph</creatorcontrib><creatorcontrib>Bächmann, Knut</creatorcontrib><creatorcontrib>Ullrich, Cornelia I.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veselov, Dmitry</au><au>Langhans, Markus</au><au>Hartung, Wolfram</au><au>Aloni, Roni</au><au>Feussner, Ivo</au><au>Götz, Claudia</au><au>Veselova, Svetlana</au><au>Schlomski, Stefan</au><au>Dickler, Christoph</au><au>Bächmann, Knut</au><au>Ullrich, Cornelia I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Agrobacterium tumefaciens C58-induced plant tumors and impact on host shoots are controlled by a cascade of jasmonic acid, auxin, cytokinin, ethylene and abscisic acid</atitle><jtitle>Planta</jtitle><addtitle>Planta</addtitle><date>2003-01-01</date><risdate>2003</risdate><volume>216</volume><issue>3</issue><spage>512</spage><epage>522</epage><pages>512-522</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><coden>PLANAB</coden><abstract>The development of Agrobacterium tumefaciens-induced plant tumors primarily depends on the excessive production of auxin and cytokinin by enzymes encoded on T-DNA genes integrated into the plant genome. The aim of the present study was to investigate the involvement of additional phytohormone signals in the vascularization required for rapid tumor proliferation. In stem tumors of Ricinus communis L., free auxin and zeatin riboside concentrations increased within 2 weeks to 15-fold the concentrations in control stem tissue. Auxin and cytokinin immunolocalization revealed the highest concentrations within and around tumor vascular bundles with concentration gradients. The time-course of changes in free auxin concentration in roots was inversely correlated with that in the tumors. The high ethylene emission induced by increased auxin- and cytokinin correlated with a 36-fold accumulation of abscisic acid in tumors. Ethylene emitted from tumors and exogenously applied ethylene caused an increase in abscisic acid concentrations also in the host leaves, with a diminution in leaf water vapor conductance. Jasmonic acid concentration reached a maximum already within the first week of bacterial infection. A wound effect could be excluded. The results demonstrate the concerted interaction of a cascade of transiently induced, non-T-DNA-encoded phytohormones jasmonic acid, ethylene and abscisic acid with T-DNA-encoded auxin and zeatin riboside plus trans-zeatin, all of which are required for successful plant tumor vascularization and development together with inhibition of host plant growth.</abstract><cop>Berlin</cop><pub>Springer-Verlag</pub><pmid>12520344</pmid><doi>10.1007/s00425-002-0883-5</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-0935
ispartof Planta, 2003-01, Vol.216 (3), p.512-522
issn 0032-0935
1432-2048
language eng
recordid cdi_proquest_miscellaneous_72945674
source Springer Link; JSTOR
subjects Abscisic Acid - metabolism
Abscisic Acid - pharmacology
Agrobacterium tumefaciens - growth & development
Auxins
Bacterial diseases
Cyclopentanes - metabolism
Cytokinins
Cytokinins - metabolism
Cytokinins - pharmacology
Deoxyribonucleic acid
DNA
Ethylenes - metabolism
Immunohistochemistry
Indoleacetic Acids - metabolism
Insulin antibodies
Leaves
Microscopy, Immunoelectron
Oxylipins
Plant growth
Plant growth regulators
Plant Growth Regulators - metabolism
Plant Growth Regulators - pharmacology
Plant roots
Plant Roots - drug effects
Plant Roots - growth & development
Plant Roots - microbiology
Plant Shoots - chemistry
Plant Shoots - growth & development
Plant Shoots - microbiology
Plant Tumors - microbiology
Plants
Ricinus - chemistry
Ricinus - growth & development
Ricinus - microbiology
Sieve elements
Time Factors
Tumors
Water vapor
Xylem
title Development of Agrobacterium tumefaciens C58-induced plant tumors and impact on host shoots are controlled by a cascade of jasmonic acid, auxin, cytokinin, ethylene and abscisic acid
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A34%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Agrobacterium%20tumefaciens%20C58-induced%20plant%20tumors%20and%20impact%20on%20host%20shoots%20are%20controlled%20by%20a%20cascade%20of%20jasmonic%20acid,%20auxin,%20cytokinin,%20ethylene%20and%20abscisic%20acid&rft.jtitle=Planta&rft.au=Veselov,%20Dmitry&rft.date=2003-01-01&rft.volume=216&rft.issue=3&rft.spage=512&rft.epage=522&rft.pages=512-522&rft.issn=0032-0935&rft.eissn=1432-2048&rft.coden=PLANAB&rft_id=info:doi/10.1007/s00425-002-0883-5&rft_dat=%3Cjstor_proqu%3E23387350%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c376t-19c898ceb2fe595be8a06a92e7c362edad1208668ddd8537a234a922a4a013fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=734480397&rft_id=info:pmid/12520344&rft_jstor_id=23387350&rfr_iscdi=true