Loading…

Sulphoxidation of ethyl methyl sulphide, 4-chlorophenyl methyl sulphide and diphenyl sulphide by purified pig liver flavin-containing monooxygenase

1. The biotransformation of ethyl methyl sulphide (EMS), 4-chlorophenyl methyl sulphide (CPMS) and diphenyl sulphide (DPS) to their corresponding sulphoxides by purified flavin-containing monooxygenase (FMO) is described. 2. Purified pig liver flavin-containing monooxygenase catalysed the sulphoxida...

Full description

Saved in:
Bibliographic Details
Published in:Xenobiotica 2003, Vol.33 (1), p.83-91
Main Authors: Nnane, I. P., Damani, L. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:1. The biotransformation of ethyl methyl sulphide (EMS), 4-chlorophenyl methyl sulphide (CPMS) and diphenyl sulphide (DPS) to their corresponding sulphoxides by purified flavin-containing monooxygenase (FMO) is described. 2. Purified pig liver flavin-containing monooxygenase catalysed the sulphoxidation of EMS, CPMS and DPS to their corresponding sulphoxides and the reactions followed single enzyme Michelis-Menten kinetics. 3. The apparent K m and V max for the sulphoxidation of EMS were 1.38 ± 0.05 mM and 78.74 ± 3.9 nmoles mg − 1 protein min − 1, respectively. The apparent K m and V max for the sulphoxidation of CPMS were 0.185 ± 0.03 mM and 103 ± 5.0 nmoles mg − 1 protein min − 1, respectively. The apparent K m and V max for the sulphoxidation of DPS were 0.068 ± 0.002 mM and 49.26 ± 2.05 nmoles mg − 1 protein min − 1, respectively. 4. A significant reduction of the sulphoxidation of these simple sulphides was observed with addition of 1-naphthylthiourea in the incubation medium. On the other hand, incorporation of catalase and superoxide dismutase into the incubation media produced no appreciable inhibition of the observed sulphoxidation of the sulphides. 5. These results suggest that FMO is responsible, at least in part, for the sulphoxidation of nucleophilic sulphides as well as for the oxidation of sulphur atoms that reside within or adjacent to aromatic systems.
ISSN:0049-8254
1366-5928
DOI:10.1080/0049825021000022339