Loading…
Transcriptional Adaptation to Cystic Fibrosis Transmembrane Conductance Regulator Deficiency
Cystic fibrosis, the most commonly inherited lethal pulmonary disorder in Caucasians, is caused by mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR). To identify genomic responses to the presence or absence of CFTR in pulmonary tissues in vivo , microarray analyses of...
Saved in:
Published in: | The Journal of biological chemistry 2003-02, Vol.278 (9), p.7674-7682 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cystic fibrosis, the most commonly inherited lethal pulmonary disorder in Caucasians, is caused by mutations in the cystic
fibrosis transmembrane conductance regulator gene (CFTR). To identify genomic responses to the presence or absence of CFTR
in pulmonary tissues in vivo , microarray analyses of lung mRNAs were performed on whole lung tissue from mice lacking (CFTR(â)) or expressing mouse CFTR
(CFTR(+)). Whereas the histology of lungs from CFTR(â) and CFTR(+) mice was indistinguishable, statistically significant increases
in the relative abundance of 29 and decreases in 25 RNAs were identified by RNA microarray analysis. Of RNAs whose expression
was consistently altered by the absence of CFTR, functional classes of genes influencing gene transcription, inflammation,
intracellular trafficking, signal transduction, and ion transport were identified. RNAs encoding the transcription factor
CCAAT enhancer-binding protein (CEBP) δ and interleukin (IL) 1β, both known to regulate CFTR expression, were induced, perhaps
indicating adaptation to the lack of CFTR. RNAs mediating lung inflammation including calgranulin-S100 family members, IL-1β
and IL-4, were increased. Likewise, expression of several membrane transport proteins that interact directly with CFTR were
increased, suggesting that CFTR-protein complexes initiate genomic responses. Absence of CFTR influenced the expression of
genes modulating diverse pulmonary cell functions that may ameliorate or contribute to the pathogenesis of CF. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M210277200 |