Loading…
SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae
Mutations in the Saccharomyces cerevisiae gene SPT15, which encodes the TATA-binding protein TFIID, have been shown to cause pleiotropic phenotypes and to lead to changes in transcription in vivo. Here, we report the cloning and analysis of one such mutation, spt15-21, which causes a single-amino-ac...
Saved in:
Published in: | Genes & development 1992-07, Vol.6 (7), p.1319-1331 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c384t-661946f0937c00701498ea47ec1668ce239438b7f1b8b3488f69eafbd96b3dbc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c384t-661946f0937c00701498ea47ec1668ce239438b7f1b8b3488f69eafbd96b3dbc3 |
container_end_page | 1331 |
container_issue | 7 |
container_start_page | 1319 |
container_title | Genes & development |
container_volume | 6 |
creator | EISENMANN, D. M ARNDT, K. M RICUPERO, S. L ROONEY, J. W WINSTON, F |
description | Mutations in the Saccharomyces cerevisiae gene SPT15, which encodes the TATA-binding protein TFIID, have been shown to cause pleiotropic phenotypes and to lead to changes in transcription in vivo. Here, we report the cloning and analysis of one such mutation, spt15-21, which causes a single-amino-acid substitution in a conserved residue of TFIID. Surprisingly, the spt15-21 mutation does not affect the stability of TFIID, its ability to bind to DNA or to support basal transcription in vitro, or the ability of an upstream activator to function in vivo. To study further the spt15-21 defect, extragenic suppressors of this mutation were isolated and analyzed. All of the extragenic suppressors of spt15-21 are mutations in the previously identified SPT3 gene. Suppression of spt15-21 by these spt3 mutations is allele-specific, suggesting that TFIID and SPT3 interact and that spt15-21 impairs this interaction in some way. Consistent with these genetic data, coimmunoprecipitation experiments demonstrate that the TFIID and SPT3 proteins are physically associated in yeast extracts. Taken together, these results suggest that SPT3 is a TFIID-associated protein, required for TFIID to function at particular promoters in vivo. |
doi_str_mv | 10.1101/gad.6.7.1319 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73052443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16360455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-661946f0937c00701498ea47ec1668ce239438b7f1b8b3488f69eafbd96b3dbc3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWh87t0IW4sqpN03mJllKtVoQFFrXIZNmNDKPmkwt_feOtOjS1Vmc75zFR8g5gyFjwG7e7GKIQzlknOk9MmC50FkupNwnA1AaMs1RH5HjlD4AAAHxkBwyHCnFxYDMZi9zTkPT-Whdl-g6dO90PplO72jXUltV7Zo2baxtRbtom-RiWHahbfoJnVnn3m1s643ziTof_VdIwfpTclDaKvmzXZ6Q18n9fPyYPT0_TMe3T5njSnQZItMCS9BcOgAJTGjlrZDeMUTl_IhrwVUhS1aoggulStTelsVCY8EXheMn5Gr7u4zt58qnztQhOV9VtvHtKhnJIR8Jwf8FGXIEkec9eL0FXWxTir40yxhqGzeGgfmRbXrZBo00P7J7_GL3uypqv_iDt3b7_nLX2-RsVfYCXUi_WC5GyAD4N6Yohlo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16360455</pqid></control><display><type>article</type><title>SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae</title><source>Freely Accessible Journals</source><creator>EISENMANN, D. M ; ARNDT, K. M ; RICUPERO, S. L ; ROONEY, J. W ; WINSTON, F</creator><creatorcontrib>EISENMANN, D. M ; ARNDT, K. M ; RICUPERO, S. L ; ROONEY, J. W ; WINSTON, F</creatorcontrib><description>Mutations in the Saccharomyces cerevisiae gene SPT15, which encodes the TATA-binding protein TFIID, have been shown to cause pleiotropic phenotypes and to lead to changes in transcription in vivo. Here, we report the cloning and analysis of one such mutation, spt15-21, which causes a single-amino-acid substitution in a conserved residue of TFIID. Surprisingly, the spt15-21 mutation does not affect the stability of TFIID, its ability to bind to DNA or to support basal transcription in vitro, or the ability of an upstream activator to function in vivo. To study further the spt15-21 defect, extragenic suppressors of this mutation were isolated and analyzed. All of the extragenic suppressors of spt15-21 are mutations in the previously identified SPT3 gene. Suppression of spt15-21 by these spt3 mutations is allele-specific, suggesting that TFIID and SPT3 interact and that spt15-21 impairs this interaction in some way. Consistent with these genetic data, coimmunoprecipitation experiments demonstrate that the TFIID and SPT3 proteins are physically associated in yeast extracts. Taken together, these results suggest that SPT3 is a TFIID-associated protein, required for TFIID to function at particular promoters in vivo.</description><identifier>ISSN: 0890-9369</identifier><identifier>EISSN: 1549-5477</identifier><identifier>DOI: 10.1101/gad.6.7.1319</identifier><identifier>PMID: 1628834</identifier><identifier>CODEN: GEDEEP</identifier><language>eng</language><publisher>Cold Spring Harbor, NY: Cold Spring Harbor Laboratory</publisher><subject>Amino Acid Sequence ; Biological and medical sciences ; Fundamental and applied biological sciences. Psychology ; Fungal Proteins - metabolism ; Introns ; Molecular and cellular biology ; Molecular genetics ; Molecular Sequence Data ; Multigene Family ; Mutation ; Precipitin Tests ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins ; Suppression, Genetic ; Transcription Factor TFIID ; Transcription Factors - metabolism ; Transcription, Genetic ; Transcription. Transcription factor. Splicing. Rna processing</subject><ispartof>Genes & development, 1992-07, Vol.6 (7), p.1319-1331</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-661946f0937c00701498ea47ec1668ce239438b7f1b8b3488f69eafbd96b3dbc3</citedby><cites>FETCH-LOGICAL-c384t-661946f0937c00701498ea47ec1668ce239438b7f1b8b3488f69eafbd96b3dbc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5426100$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1628834$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>EISENMANN, D. M</creatorcontrib><creatorcontrib>ARNDT, K. M</creatorcontrib><creatorcontrib>RICUPERO, S. L</creatorcontrib><creatorcontrib>ROONEY, J. W</creatorcontrib><creatorcontrib>WINSTON, F</creatorcontrib><title>SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae</title><title>Genes & development</title><addtitle>Genes Dev</addtitle><description>Mutations in the Saccharomyces cerevisiae gene SPT15, which encodes the TATA-binding protein TFIID, have been shown to cause pleiotropic phenotypes and to lead to changes in transcription in vivo. Here, we report the cloning and analysis of one such mutation, spt15-21, which causes a single-amino-acid substitution in a conserved residue of TFIID. Surprisingly, the spt15-21 mutation does not affect the stability of TFIID, its ability to bind to DNA or to support basal transcription in vitro, or the ability of an upstream activator to function in vivo. To study further the spt15-21 defect, extragenic suppressors of this mutation were isolated and analyzed. All of the extragenic suppressors of spt15-21 are mutations in the previously identified SPT3 gene. Suppression of spt15-21 by these spt3 mutations is allele-specific, suggesting that TFIID and SPT3 interact and that spt15-21 impairs this interaction in some way. Consistent with these genetic data, coimmunoprecipitation experiments demonstrate that the TFIID and SPT3 proteins are physically associated in yeast extracts. Taken together, these results suggest that SPT3 is a TFIID-associated protein, required for TFIID to function at particular promoters in vivo.</description><subject>Amino Acid Sequence</subject><subject>Biological and medical sciences</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungal Proteins - metabolism</subject><subject>Introns</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecular Sequence Data</subject><subject>Multigene Family</subject><subject>Mutation</subject><subject>Precipitin Tests</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Suppression, Genetic</subject><subject>Transcription Factor TFIID</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><subject>Transcription. Transcription factor. Splicing. Rna processing</subject><issn>0890-9369</issn><issn>1549-5477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWh87t0IW4sqpN03mJllKtVoQFFrXIZNmNDKPmkwt_feOtOjS1Vmc75zFR8g5gyFjwG7e7GKIQzlknOk9MmC50FkupNwnA1AaMs1RH5HjlD4AAAHxkBwyHCnFxYDMZi9zTkPT-Whdl-g6dO90PplO72jXUltV7Zo2baxtRbtom-RiWHahbfoJnVnn3m1s643ziTof_VdIwfpTclDaKvmzXZ6Q18n9fPyYPT0_TMe3T5njSnQZItMCS9BcOgAJTGjlrZDeMUTl_IhrwVUhS1aoggulStTelsVCY8EXheMn5Gr7u4zt58qnztQhOV9VtvHtKhnJIR8Jwf8FGXIEkec9eL0FXWxTir40yxhqGzeGgfmRbXrZBo00P7J7_GL3uypqv_iDt3b7_nLX2-RsVfYCXUi_WC5GyAD4N6Yohlo</recordid><startdate>19920701</startdate><enddate>19920701</enddate><creator>EISENMANN, D. M</creator><creator>ARNDT, K. M</creator><creator>RICUPERO, S. L</creator><creator>ROONEY, J. W</creator><creator>WINSTON, F</creator><general>Cold Spring Harbor Laboratory</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19920701</creationdate><title>SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae</title><author>EISENMANN, D. M ; ARNDT, K. M ; RICUPERO, S. L ; ROONEY, J. W ; WINSTON, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-661946f0937c00701498ea47ec1668ce239438b7f1b8b3488f69eafbd96b3dbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Amino Acid Sequence</topic><topic>Biological and medical sciences</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungal Proteins - metabolism</topic><topic>Introns</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecular Sequence Data</topic><topic>Multigene Family</topic><topic>Mutation</topic><topic>Precipitin Tests</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Suppression, Genetic</topic><topic>Transcription Factor TFIID</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><topic>Transcription. Transcription factor. Splicing. Rna processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>EISENMANN, D. M</creatorcontrib><creatorcontrib>ARNDT, K. M</creatorcontrib><creatorcontrib>RICUPERO, S. L</creatorcontrib><creatorcontrib>ROONEY, J. W</creatorcontrib><creatorcontrib>WINSTON, F</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Genes & development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>EISENMANN, D. M</au><au>ARNDT, K. M</au><au>RICUPERO, S. L</au><au>ROONEY, J. W</au><au>WINSTON, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae</atitle><jtitle>Genes & development</jtitle><addtitle>Genes Dev</addtitle><date>1992-07-01</date><risdate>1992</risdate><volume>6</volume><issue>7</issue><spage>1319</spage><epage>1331</epage><pages>1319-1331</pages><issn>0890-9369</issn><eissn>1549-5477</eissn><coden>GEDEEP</coden><abstract>Mutations in the Saccharomyces cerevisiae gene SPT15, which encodes the TATA-binding protein TFIID, have been shown to cause pleiotropic phenotypes and to lead to changes in transcription in vivo. Here, we report the cloning and analysis of one such mutation, spt15-21, which causes a single-amino-acid substitution in a conserved residue of TFIID. Surprisingly, the spt15-21 mutation does not affect the stability of TFIID, its ability to bind to DNA or to support basal transcription in vitro, or the ability of an upstream activator to function in vivo. To study further the spt15-21 defect, extragenic suppressors of this mutation were isolated and analyzed. All of the extragenic suppressors of spt15-21 are mutations in the previously identified SPT3 gene. Suppression of spt15-21 by these spt3 mutations is allele-specific, suggesting that TFIID and SPT3 interact and that spt15-21 impairs this interaction in some way. Consistent with these genetic data, coimmunoprecipitation experiments demonstrate that the TFIID and SPT3 proteins are physically associated in yeast extracts. Taken together, these results suggest that SPT3 is a TFIID-associated protein, required for TFIID to function at particular promoters in vivo.</abstract><cop>Cold Spring Harbor, NY</cop><pub>Cold Spring Harbor Laboratory</pub><pmid>1628834</pmid><doi>10.1101/gad.6.7.1319</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0890-9369 |
ispartof | Genes & development, 1992-07, Vol.6 (7), p.1319-1331 |
issn | 0890-9369 1549-5477 |
language | eng |
recordid | cdi_proquest_miscellaneous_73052443 |
source | Freely Accessible Journals |
subjects | Amino Acid Sequence Biological and medical sciences Fundamental and applied biological sciences. Psychology Fungal Proteins - metabolism Introns Molecular and cellular biology Molecular genetics Molecular Sequence Data Multigene Family Mutation Precipitin Tests Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins Suppression, Genetic Transcription Factor TFIID Transcription Factors - metabolism Transcription, Genetic Transcription. Transcription factor. Splicing. Rna processing |
title | SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A28%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SPT3%20interacts%20with%20TFIID%20to%20allow%20normal%20transcription%20in%20Saccharomyces%20cerevisiae&rft.jtitle=Genes%20&%20development&rft.au=EISENMANN,%20D.%20M&rft.date=1992-07-01&rft.volume=6&rft.issue=7&rft.spage=1319&rft.epage=1331&rft.pages=1319-1331&rft.issn=0890-9369&rft.eissn=1549-5477&rft.coden=GEDEEP&rft_id=info:doi/10.1101/gad.6.7.1319&rft_dat=%3Cproquest_cross%3E16360455%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-661946f0937c00701498ea47ec1668ce239438b7f1b8b3488f69eafbd96b3dbc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=16360455&rft_id=info:pmid/1628834&rfr_iscdi=true |