Loading…

SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae

Mutations in the Saccharomyces cerevisiae gene SPT15, which encodes the TATA-binding protein TFIID, have been shown to cause pleiotropic phenotypes and to lead to changes in transcription in vivo. Here, we report the cloning and analysis of one such mutation, spt15-21, which causes a single-amino-ac...

Full description

Saved in:
Bibliographic Details
Published in:Genes & development 1992-07, Vol.6 (7), p.1319-1331
Main Authors: EISENMANN, D. M, ARNDT, K. M, RICUPERO, S. L, ROONEY, J. W, WINSTON, F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c384t-661946f0937c00701498ea47ec1668ce239438b7f1b8b3488f69eafbd96b3dbc3
cites cdi_FETCH-LOGICAL-c384t-661946f0937c00701498ea47ec1668ce239438b7f1b8b3488f69eafbd96b3dbc3
container_end_page 1331
container_issue 7
container_start_page 1319
container_title Genes & development
container_volume 6
creator EISENMANN, D. M
ARNDT, K. M
RICUPERO, S. L
ROONEY, J. W
WINSTON, F
description Mutations in the Saccharomyces cerevisiae gene SPT15, which encodes the TATA-binding protein TFIID, have been shown to cause pleiotropic phenotypes and to lead to changes in transcription in vivo. Here, we report the cloning and analysis of one such mutation, spt15-21, which causes a single-amino-acid substitution in a conserved residue of TFIID. Surprisingly, the spt15-21 mutation does not affect the stability of TFIID, its ability to bind to DNA or to support basal transcription in vitro, or the ability of an upstream activator to function in vivo. To study further the spt15-21 defect, extragenic suppressors of this mutation were isolated and analyzed. All of the extragenic suppressors of spt15-21 are mutations in the previously identified SPT3 gene. Suppression of spt15-21 by these spt3 mutations is allele-specific, suggesting that TFIID and SPT3 interact and that spt15-21 impairs this interaction in some way. Consistent with these genetic data, coimmunoprecipitation experiments demonstrate that the TFIID and SPT3 proteins are physically associated in yeast extracts. Taken together, these results suggest that SPT3 is a TFIID-associated protein, required for TFIID to function at particular promoters in vivo.
doi_str_mv 10.1101/gad.6.7.1319
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73052443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16360455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-661946f0937c00701498ea47ec1668ce239438b7f1b8b3488f69eafbd96b3dbc3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWh87t0IW4sqpN03mJllKtVoQFFrXIZNmNDKPmkwt_feOtOjS1Vmc75zFR8g5gyFjwG7e7GKIQzlknOk9MmC50FkupNwnA1AaMs1RH5HjlD4AAAHxkBwyHCnFxYDMZi9zTkPT-Whdl-g6dO90PplO72jXUltV7Zo2baxtRbtom-RiWHahbfoJnVnn3m1s643ziTof_VdIwfpTclDaKvmzXZ6Q18n9fPyYPT0_TMe3T5njSnQZItMCS9BcOgAJTGjlrZDeMUTl_IhrwVUhS1aoggulStTelsVCY8EXheMn5Gr7u4zt58qnztQhOV9VtvHtKhnJIR8Jwf8FGXIEkec9eL0FXWxTir40yxhqGzeGgfmRbXrZBo00P7J7_GL3uypqv_iDt3b7_nLX2-RsVfYCXUi_WC5GyAD4N6Yohlo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16360455</pqid></control><display><type>article</type><title>SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae</title><source>Freely Accessible Journals</source><creator>EISENMANN, D. M ; ARNDT, K. M ; RICUPERO, S. L ; ROONEY, J. W ; WINSTON, F</creator><creatorcontrib>EISENMANN, D. M ; ARNDT, K. M ; RICUPERO, S. L ; ROONEY, J. W ; WINSTON, F</creatorcontrib><description>Mutations in the Saccharomyces cerevisiae gene SPT15, which encodes the TATA-binding protein TFIID, have been shown to cause pleiotropic phenotypes and to lead to changes in transcription in vivo. Here, we report the cloning and analysis of one such mutation, spt15-21, which causes a single-amino-acid substitution in a conserved residue of TFIID. Surprisingly, the spt15-21 mutation does not affect the stability of TFIID, its ability to bind to DNA or to support basal transcription in vitro, or the ability of an upstream activator to function in vivo. To study further the spt15-21 defect, extragenic suppressors of this mutation were isolated and analyzed. All of the extragenic suppressors of spt15-21 are mutations in the previously identified SPT3 gene. Suppression of spt15-21 by these spt3 mutations is allele-specific, suggesting that TFIID and SPT3 interact and that spt15-21 impairs this interaction in some way. Consistent with these genetic data, coimmunoprecipitation experiments demonstrate that the TFIID and SPT3 proteins are physically associated in yeast extracts. Taken together, these results suggest that SPT3 is a TFIID-associated protein, required for TFIID to function at particular promoters in vivo.</description><identifier>ISSN: 0890-9369</identifier><identifier>EISSN: 1549-5477</identifier><identifier>DOI: 10.1101/gad.6.7.1319</identifier><identifier>PMID: 1628834</identifier><identifier>CODEN: GEDEEP</identifier><language>eng</language><publisher>Cold Spring Harbor, NY: Cold Spring Harbor Laboratory</publisher><subject>Amino Acid Sequence ; Biological and medical sciences ; Fundamental and applied biological sciences. Psychology ; Fungal Proteins - metabolism ; Introns ; Molecular and cellular biology ; Molecular genetics ; Molecular Sequence Data ; Multigene Family ; Mutation ; Precipitin Tests ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins ; Suppression, Genetic ; Transcription Factor TFIID ; Transcription Factors - metabolism ; Transcription, Genetic ; Transcription. Transcription factor. Splicing. Rna processing</subject><ispartof>Genes &amp; development, 1992-07, Vol.6 (7), p.1319-1331</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-661946f0937c00701498ea47ec1668ce239438b7f1b8b3488f69eafbd96b3dbc3</citedby><cites>FETCH-LOGICAL-c384t-661946f0937c00701498ea47ec1668ce239438b7f1b8b3488f69eafbd96b3dbc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5426100$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1628834$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>EISENMANN, D. M</creatorcontrib><creatorcontrib>ARNDT, K. M</creatorcontrib><creatorcontrib>RICUPERO, S. L</creatorcontrib><creatorcontrib>ROONEY, J. W</creatorcontrib><creatorcontrib>WINSTON, F</creatorcontrib><title>SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae</title><title>Genes &amp; development</title><addtitle>Genes Dev</addtitle><description>Mutations in the Saccharomyces cerevisiae gene SPT15, which encodes the TATA-binding protein TFIID, have been shown to cause pleiotropic phenotypes and to lead to changes in transcription in vivo. Here, we report the cloning and analysis of one such mutation, spt15-21, which causes a single-amino-acid substitution in a conserved residue of TFIID. Surprisingly, the spt15-21 mutation does not affect the stability of TFIID, its ability to bind to DNA or to support basal transcription in vitro, or the ability of an upstream activator to function in vivo. To study further the spt15-21 defect, extragenic suppressors of this mutation were isolated and analyzed. All of the extragenic suppressors of spt15-21 are mutations in the previously identified SPT3 gene. Suppression of spt15-21 by these spt3 mutations is allele-specific, suggesting that TFIID and SPT3 interact and that spt15-21 impairs this interaction in some way. Consistent with these genetic data, coimmunoprecipitation experiments demonstrate that the TFIID and SPT3 proteins are physically associated in yeast extracts. Taken together, these results suggest that SPT3 is a TFIID-associated protein, required for TFIID to function at particular promoters in vivo.</description><subject>Amino Acid Sequence</subject><subject>Biological and medical sciences</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungal Proteins - metabolism</subject><subject>Introns</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecular Sequence Data</subject><subject>Multigene Family</subject><subject>Mutation</subject><subject>Precipitin Tests</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Suppression, Genetic</subject><subject>Transcription Factor TFIID</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><subject>Transcription. Transcription factor. Splicing. Rna processing</subject><issn>0890-9369</issn><issn>1549-5477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWh87t0IW4sqpN03mJllKtVoQFFrXIZNmNDKPmkwt_feOtOjS1Vmc75zFR8g5gyFjwG7e7GKIQzlknOk9MmC50FkupNwnA1AaMs1RH5HjlD4AAAHxkBwyHCnFxYDMZi9zTkPT-Whdl-g6dO90PplO72jXUltV7Zo2baxtRbtom-RiWHahbfoJnVnn3m1s643ziTof_VdIwfpTclDaKvmzXZ6Q18n9fPyYPT0_TMe3T5njSnQZItMCS9BcOgAJTGjlrZDeMUTl_IhrwVUhS1aoggulStTelsVCY8EXheMn5Gr7u4zt58qnztQhOV9VtvHtKhnJIR8Jwf8FGXIEkec9eL0FXWxTir40yxhqGzeGgfmRbXrZBo00P7J7_GL3uypqv_iDt3b7_nLX2-RsVfYCXUi_WC5GyAD4N6Yohlo</recordid><startdate>19920701</startdate><enddate>19920701</enddate><creator>EISENMANN, D. M</creator><creator>ARNDT, K. M</creator><creator>RICUPERO, S. L</creator><creator>ROONEY, J. W</creator><creator>WINSTON, F</creator><general>Cold Spring Harbor Laboratory</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19920701</creationdate><title>SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae</title><author>EISENMANN, D. M ; ARNDT, K. M ; RICUPERO, S. L ; ROONEY, J. W ; WINSTON, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-661946f0937c00701498ea47ec1668ce239438b7f1b8b3488f69eafbd96b3dbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Amino Acid Sequence</topic><topic>Biological and medical sciences</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungal Proteins - metabolism</topic><topic>Introns</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecular Sequence Data</topic><topic>Multigene Family</topic><topic>Mutation</topic><topic>Precipitin Tests</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Suppression, Genetic</topic><topic>Transcription Factor TFIID</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><topic>Transcription. Transcription factor. Splicing. Rna processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>EISENMANN, D. M</creatorcontrib><creatorcontrib>ARNDT, K. M</creatorcontrib><creatorcontrib>RICUPERO, S. L</creatorcontrib><creatorcontrib>ROONEY, J. W</creatorcontrib><creatorcontrib>WINSTON, F</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Genes &amp; development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>EISENMANN, D. M</au><au>ARNDT, K. M</au><au>RICUPERO, S. L</au><au>ROONEY, J. W</au><au>WINSTON, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae</atitle><jtitle>Genes &amp; development</jtitle><addtitle>Genes Dev</addtitle><date>1992-07-01</date><risdate>1992</risdate><volume>6</volume><issue>7</issue><spage>1319</spage><epage>1331</epage><pages>1319-1331</pages><issn>0890-9369</issn><eissn>1549-5477</eissn><coden>GEDEEP</coden><abstract>Mutations in the Saccharomyces cerevisiae gene SPT15, which encodes the TATA-binding protein TFIID, have been shown to cause pleiotropic phenotypes and to lead to changes in transcription in vivo. Here, we report the cloning and analysis of one such mutation, spt15-21, which causes a single-amino-acid substitution in a conserved residue of TFIID. Surprisingly, the spt15-21 mutation does not affect the stability of TFIID, its ability to bind to DNA or to support basal transcription in vitro, or the ability of an upstream activator to function in vivo. To study further the spt15-21 defect, extragenic suppressors of this mutation were isolated and analyzed. All of the extragenic suppressors of spt15-21 are mutations in the previously identified SPT3 gene. Suppression of spt15-21 by these spt3 mutations is allele-specific, suggesting that TFIID and SPT3 interact and that spt15-21 impairs this interaction in some way. Consistent with these genetic data, coimmunoprecipitation experiments demonstrate that the TFIID and SPT3 proteins are physically associated in yeast extracts. Taken together, these results suggest that SPT3 is a TFIID-associated protein, required for TFIID to function at particular promoters in vivo.</abstract><cop>Cold Spring Harbor, NY</cop><pub>Cold Spring Harbor Laboratory</pub><pmid>1628834</pmid><doi>10.1101/gad.6.7.1319</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0890-9369
ispartof Genes & development, 1992-07, Vol.6 (7), p.1319-1331
issn 0890-9369
1549-5477
language eng
recordid cdi_proquest_miscellaneous_73052443
source Freely Accessible Journals
subjects Amino Acid Sequence
Biological and medical sciences
Fundamental and applied biological sciences. Psychology
Fungal Proteins - metabolism
Introns
Molecular and cellular biology
Molecular genetics
Molecular Sequence Data
Multigene Family
Mutation
Precipitin Tests
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins
Suppression, Genetic
Transcription Factor TFIID
Transcription Factors - metabolism
Transcription, Genetic
Transcription. Transcription factor. Splicing. Rna processing
title SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A28%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SPT3%20interacts%20with%20TFIID%20to%20allow%20normal%20transcription%20in%20Saccharomyces%20cerevisiae&rft.jtitle=Genes%20&%20development&rft.au=EISENMANN,%20D.%20M&rft.date=1992-07-01&rft.volume=6&rft.issue=7&rft.spage=1319&rft.epage=1331&rft.pages=1319-1331&rft.issn=0890-9369&rft.eissn=1549-5477&rft.coden=GEDEEP&rft_id=info:doi/10.1101/gad.6.7.1319&rft_dat=%3Cproquest_cross%3E16360455%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-661946f0937c00701498ea47ec1668ce239438b7f1b8b3488f69eafbd96b3dbc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=16360455&rft_id=info:pmid/1628834&rfr_iscdi=true