Loading…

In vivo bone response to porous calcium phosphate cement

We conducted an in vivo experiment to evaluate the resorption rate of a calcium phosphate cement (CPC) with macropores larger than 100 μm, using the CPC called Biocement D (Merck Biomaterial, Darmstadt, Germany), which after setting only shows pores smaller than 1 μm. The gas bubble method used duri...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomedical materials research 2003-04, Vol.65A (1), p.30-36
Main Authors: del Real, R. P., Ooms, E., Wolke, J. G. C., Vallet-Regí, M., Jansen, J. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We conducted an in vivo experiment to evaluate the resorption rate of a calcium phosphate cement (CPC) with macropores larger than 100 μm, using the CPC called Biocement D (Merck Biomaterial, Darmstadt, Germany), which after setting only shows pores smaller than 1 μm. The gas bubble method used during the setting process created macroporosity. Preset nonporous and porous cement implants were inserted into the trabecular bone of the tibial metaphysis of goats. The size of the preset implants was 6 mm and the diameter of the drill hole was 6.3 mm, leaving a gap of 0.3 mm between implant surface and drill wall. After 2 and 10 weeks, the animals were euthanized and cement implants with surrounding bone were retrieved for histologic evaluation. Light microscopy at 2 weeks revealed that the nonporous implants were surrounded by connective tissue. On the cement surface, we observed a monolayer of multinucleated cells. Ten weeks after implantation, the nonporous implants were still surrounded by connective tissue. However, a thin layer of bone now covered the implant surface. No sign of cement resorption was observed. In contrast, the porous cement evoked a completely different bone response. At 2 weeks, bone formation had already occurred inside the implant porosity. Bone formation even appeared to occur as a result of osteoinduction. Also, at their outer surface, the porous implants were completely surrounded by bone. At 2 weeks, about 31% of the initial cement was resorbed. After 10 weeks, 81% of the initial phosphate cement was resorbed and new bone was deposited. On the basis of these observations, we conclude that the creation of macropores can significantly improve the resorption rate of CPC. This increased degradation is associated with almost complete bone replacement. © 2003 Wiley Periodicals, Inc. J Biomed Mater Res 65A: 30–36, 2003
ISSN:1549-3296
0021-9304
1552-4965
1097-4636
DOI:10.1002/jbm.a.10432