Loading…

An X-ray Diffraction and MAS NMR Study of the Thermal Expansion Properties of Calcined Siliceous Ferrierite

Powder and single-crystal X-ray diffraction, combined with MAS NMR measurements, has been used to study the thermal expansion of siliceous zeolite ferrierite as it approaches a second-order displacive phase transition from a low-symmetry (Pnnm) to a high-symmetry (Immm) structure. Below the transiti...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2003-04, Vol.125 (14), p.4342-4349
Main Authors: Bull, Ivor, Lightfoot, Philip, Villaescusa, Luis A, Bull, Lucy M, Gover, Richard K. B, Evans, John S. O, Morris, Russell E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Powder and single-crystal X-ray diffraction, combined with MAS NMR measurements, has been used to study the thermal expansion of siliceous zeolite ferrierite as it approaches a second-order displacive phase transition from a low-symmetry (Pnnm) to a high-symmetry (Immm) structure. Below the transition temperature, ferrierite exhibits positive thermal expansivity. However, above the transition temperature a significant change in thermal behavior is seen, and ferrierite becomes a negative thermal expansion material. Accurate variable-temperature single-crystal X-ray diffraction measurements confirm the transition temperature and allow the changes in average atomic position to be followed with temperature. The results from the single-crystal X-ray diffraction study can be correlated with 29Si MAS NMR chemical shifts for the low-temperature phase. At low temperatures the results show that the positive thermal expansivity is driven by an overall increase in Si−Si distances related to an increase in Si−O−Si bond angles. However, in the high-temperature phase the Si−O−Si angles are approximately invariant with temperature, and the negative thermal expansion in this case is caused by transverse vibrations of the Si−O−Si units.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja0292400