Loading…
Polyene antibiotic biosynthesis gene clusters
Over the past 15 years the biosynthetic gene clusters for numerous bioactive polyketides have been intensively studied and recently this work has been extended to the antifungal polyene macrolides. These compounds consist of large macrolactone rings that have a characteristic series of conjugated do...
Saved in:
Published in: | Applied microbiology and biotechnology 2003-05, Vol.61 (3), p.179-188 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Over the past 15 years the biosynthetic gene clusters for numerous bioactive polyketides have been intensively studied and recently this work has been extended to the antifungal polyene macrolides. These compounds consist of large macrolactone rings that have a characteristic series of conjugated double bonds, as well as an exocyclic carboxyl group and an unusual mycosamine sugar. The biosynthetic gene clusters for nystatin, pimaricin, amphotericin and candicidin have been investigated in detail. These clusters contain the largest modular polyketide synthase genes reported to date. This body of work also provides insights into the enzymes catalysing the unusual post-polyketide modifications, and the genes regulating antibiotic biosynthesis. The sequences also provide clues about the evolutionary origins of polyene biosynthetic genes. Successful genetic manipulation of the producing organisms leading to production of polyene analogues indicates good prospects for generating improved antifungal compounds via genetic engineering. |
---|---|
ISSN: | 0175-7598 1432-0614 |
DOI: | 10.1007/s00253-002-1183-5 |