Substrate specificities and properties of human phospholipases A2 in a mixed vesicle model

Studies of the specificity of phospholipases A2 (PLA2s) for different substrates have usually been carried out in vesicles or mixed micelles, where differences in shape, size, or charge of vesicles formed with different phospholipids may give misleading results. Another factor is binding of the enzy...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1992-09, Vol.267 (26), p.18342-18348
Main Authors: DIEZ, E, LOUIS-FLAMBERG, P, HALL, R. H, MAYER, R. J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Studies of the specificity of phospholipases A2 (PLA2s) for different substrates have usually been carried out in vesicles or mixed micelles, where differences in shape, size, or charge of vesicles formed with different phospholipids may give misleading results. Another factor is binding of the enzyme to the phospholipid surface, which has recently been addressed using vesicles of an anionic phospholipid, dimyristoyl-sn-glycero-3-phosphomethanol (DMPM) to which some extracellular PLA2s were shown to bind with a very high affinity (Jain, M. K., and Berg, O. G. (1989) Biochem. Biophys. Acta 1002, 127-156). In the present report we have used a similar system to study the substrate preferences of two human PLA2s that are thought to be physiologically relevant in the metabolism of arachidonic acid: a recombinant form of the human synovial fluid (14 kDa) PLA2 and the cytosolic (85 kDa) PLA2 found in monocytic cells. It is shown that both human enzymes bind tightly to DMPM vesicles and follow the basic characteristics of processive hydrolysis in this model using analysis of progress curves and substrate competition experiments. Mixed vesicles containing DMPM with small amounts (3-5 mol%) of other phospholipids have been used to study the substrate selectivity of the two human isoenzymes. The synovial fluid PLA2 shows a clear preference (approximately 7-fold) for sn-glycero-3-phosphoethanolamine over sn-glycero-3-phosphocholine. Within glycerophosphocholines, this enzyme displays little preference for the sn-2 fatty acyl group, and a slight preference for phospholipids with sn-1-acyl versus sn-1-alkyl substituents. In contrast, the cytosolic PLA2 shows a marked selectivity for arachidonoyl in the sn-2 position and only minor differences in selectivity for the polar head group in the sn-3 position. This enzyme does not distinguish between sn-1-acyl and sn-1-alkyl subclasses of glycerophosphocholines.
ISSN:0021-9258
1083-351X
DOI:10.1016/s0021-9258(19)36966-2