Loading…
The use of bioinformatics for identifying class II-restricted T-cell epitopes
An important step in the design of subunit vaccines is the identification of promiscuous T helper cell epitopes in sets of disease-specific gene products. Most of the epitope prediction models are based on HLA-II peptide binding, which constitutes a major bottleneck in the natural selection of epito...
Saved in:
Published in: | Methods (San Diego, Calif.) Calif.), 2003-03, Vol.29 (3), p.299-309 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An important step in the design of subunit vaccines is the identification of promiscuous T helper cell epitopes in sets of disease-specific gene products. Most of the epitope prediction models are based on HLA-II peptide binding, which constitutes a major bottleneck in the natural selection of epitopes. Here we describe a computer model, TEPITOPE, that enables the systematic prediction of promiscuous peptide ligands for a broad range of HLA binding specificity. We show how to apply the TEPITOPE prediction model to identify T-cell epitopes, and provide examples of its successful application in the context of oncology, allergy, and infectious and autoimmune diseases. |
---|---|
ISSN: | 1046-2023 1095-9130 |
DOI: | 10.1016/S1046-2023(02)00352-3 |