Loading…
A numerical scheme for modeling wavefront propagation on a monolayer of arbitrary geometry
The majority of models of wavefront propagation in cardiac tissue have assumed relatively simple geometries. Extensions to complicated three-dimensional (3-D) representations are computationally challenging due to issues related both to problem size and to the correct implementation of flux conserva...
Saved in:
Published in: | IEEE transactions on biomedical engineering 2003-04, Vol.50 (4), p.412-420 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The majority of models of wavefront propagation in cardiac tissue have assumed relatively simple geometries. Extensions to complicated three-dimensional (3-D) representations are computationally challenging due to issues related both to problem size and to the correct implementation of flux conservation. In this paper, we present a generalized finite difference scheme (GDFS) to simulate the reaction-diffusion system on a 3-D monolayer of arbitrary shape. GDFS is a vertex-centered variant of the finite-volume method that ensures local flux conservation. Owing to an effectively lower dimensionality, the overall computation time is reduced compared to full 3-D models at the same spatial resolution. We present the theoretical background to compute both the wavefront conduction and local electrograms using a matrix formulation. The same matrix is used for both these quantities. We then give some results of simulation for simple monolayers and complex monolayers resembling a human atria. |
---|---|
ISSN: | 0018-9294 1558-2531 |
DOI: | 10.1109/TBME.2003.809505 |