Loading…

Cultured embryonic bone shafts show osteogenic responses to mechanical loading

Pairs of 17-day embryonic chick tibiotarsi were removed and maintained in organ culture. One of each pair was subjected to a single 20-minute period of intermittent loading at 0.4 Hz, producing peak longitudinal compressive strains of 650 microstrain (mu epsilon). In the 18-hour culture period follo...

Full description

Saved in:
Bibliographic Details
Published in:Calcified tissue international 1992-08, Vol.51 (2), p.132-136
Main Authors: ZAMAN, G, DALLAS, S. L, LANYON, L. E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pairs of 17-day embryonic chick tibiotarsi were removed and maintained in organ culture. One of each pair was subjected to a single 20-minute period of intermittent loading at 0.4 Hz, producing peak longitudinal compressive strains of 650 microstrain (mu epsilon). In the 18-hour culture period following loading, alkaline phosphatase levels in the osteoblasts of the loaded tibiotarsi were maintained whereas in controls they declined. In situ hybridization using a collagen type I cRNA riboprobe showed a substantial increase in expression of mRNA for collagen type I in the periosteal tissue of bones that were cultured for 18 hours after loading compared with that in similarly cultured controls and bones cultured for 4 hours. These results demonstrate that appropriate loading of embryonic chick bones in organ culture elicits adaptive regulation of matrix synthesis as evidenced by increased expression of the gene for type I collagen and alkaline phosphatase activity. This model may be useful as it must contain all the obligatory steps between strain change in the matrix and modified osteogenic activity.
ISSN:0171-967X
1432-0827
DOI:10.1007/BF00298501