Loading…

Fatty acid ethyl ester synthase in rat adipose tissue and its relationship to carboxylesterase

Fatty acid ethyl ester (FAEE) synthase was obtained from rat adipose tissue in an electrophoretically homogeneous form. The enzyme associated with carboxylesterase activity was purified by acetone precipitation followed by successive chromatographies on DEAE-cellulose, phenyl-Sepharose, and Sephadex...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1992-11, Vol.267 (33), p.23489-23494
Main Authors: TSUJITA, T, OKUDA, H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fatty acid ethyl ester (FAEE) synthase was obtained from rat adipose tissue in an electrophoretically homogeneous form. The enzyme associated with carboxylesterase activity was purified by acetone precipitation followed by successive chromatographies on DEAE-cellulose, phenyl-Sepharose, and Sephadex G-100 gel. The two activities in rat adipose tissue were associated as judged by their co-elution profiles, co-purifications at different steps, co-precipitations by antibody raised against purified FAEE synthase, and identical profiles of inhibition by diisopropyl fluorophosphate. The enzyme catalyzed the hydrolyses of both tri- and monoacylglycerols, and the susceptibilities of substrates increase with decreasing acyl chain length of the fatty acid moiety. Ethyl oleate-hydrolyzing activity was about one-eighth of the synthesizing activity. The N-terminal amino acid sequence of the first 27 residues of the purified enzyme was identical to that of the carboxylesterase from rat liver. With a polyclonal rabbit antibody against the rat adipose tissue FAEE synthase, the enzyme was demonstrated in the liver, lung, and testis, but not in the kidney. The antibody removed the FAEE-synthesizing activities in adipose tissue (86%), liver (23%), lung (62%), and testis (82%). These results suggest that carboxylesterase contributes to the nonoxidative ethanol metabolism (FAEE synthesis) in various organs.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(18)35865-4