Loading…
Building a hierarchy with neural networks: an example-image vector quantization
Electronic neural networks can perform the function of associative memory. Given an input pattern, the network searches through its stored memories to find which of them best matches the input. Thus the network does a combination of content-addressable search and error correction. The number of rand...
Saved in:
Published in: | Applied optics (2004) 1987-12, Vol.26 (23), p.5081-5084 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electronic neural networks can perform the function of associative memory. Given an input pattern, the network searches through its stored memories to find which of them best matches the input. Thus the network does a combination of content-addressable search and error correction. The number of random memories that a network can store is limited to a fraction of the number of electronic neurons in the circuit. We propose a method for building a hierarchy of networks that allows the fast parallel search through a list of memories that is too large to store in a single network. We have demonstrated the principle of this approach by an example in image vector quantization. |
---|---|
ISSN: | 1559-128X |
DOI: | 10.1364/AO.26.005081 |