Loading…
Inverse problem and the pseudoempirical orthogonal function method of solution. 1: Theory
In situations where a large library of observed distributions of a function, such as temperature vs height, is available, these distributions may be used to form a set of empirical orthogonal functions. When sufficient observed distributions are not available, but when the general mathematical form...
Saved in:
Published in: | Applied optics (2004) 1988-04, Vol.27 (7), p.1235-1242 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In situations where a large library of observed distributions of a function, such as temperature vs height, is available, these distributions may be used to form a set of empirical orthogonal functions. When sufficient observed distributions are not available, but when the general mathematical form of the distributions is known, a library may be constructed from the set of mathematical functions. A set of pseudoempirical orthogonal functions may then be constructed from this mathematical library. It is assumed that any distribution of the function may then be constructed from a linear sum of this pseudoempirical orthogonal set. This idea is employed to develop an inversion method using pseudoempirical orthogonal functions when a sufficient library of observations is not available. The technique employs a smoothing constraint as well as a positivity constraint, when warranted by the physical nature of the unknown. |
---|---|
ISSN: | 1559-128X |
DOI: | 10.1364/AO.27.001235 |