Loading…
Olympic fencers: adaptations in cortical and trabecular bone determined by quantitative computed tomography
Summary We investigated how cortical bone, trabecular bone, and muscle adapt in US Olympic Fencing Team members. These athletes demonstrate femoral cortical bone expansion, greater distal femoral trabecular bone density, and greater muscle mass compared to controls. This is the first study to invest...
Saved in:
Published in: | Osteoporosis international 2009-05, Vol.20 (5), p.779-785 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Summary We investigated how cortical bone, trabecular bone, and muscle adapt in US Olympic Fencing Team members. These athletes demonstrate femoral cortical bone expansion, greater distal femoral trabecular bone density, and greater muscle mass compared to controls. This is the first study to investigate musculoskeletal adaptations in Olympic fencers. Purpose Wolff's law states that bone remodels according to mechanical forces placed upon it. Our goal was to determine how cortical and trabecular bone adapt in Olympic athletes who perform intermittent high-impact activity. Materials and methods Nine males from the 2004 US Olympic Fencing Team and nine matched controls were evaluated by quantitative computed tomography. Femurs were scanned at 50% and 75% along the shaft. We evaluated cortical thickness (C.Th), cortical (C.Ar), trabecular (Tb.Ar), and total bone areas (Tot.Ar), proportions of C.Ar and Tb.Ar to Tot.Ar, cortical (C.BMD.), trabecular (Tb.MBD), and total bone densities (Tot.BMD), muscle (M.Ar), and thigh areas (Th.Ar). Results Fencers had greater C.Th (+24.5 to 38.8%), C.Ar (+16.9 to 19.6%), C.Ar/Tot.Ar (+6.3 to 16.3%), and lower Tb.Ar/Tot.Ar (-23.5% to -23.8%; p |
---|---|
ISSN: | 0937-941X 1433-2965 |
DOI: | 10.1007/s00198-008-0730-z |