Loading…
Chondrogenesis of Human Mesenchymal Stem Cells by Local Transforming Growth Factor-Beta Delivery in a Biphasic Resorbable Carrier
Little is known about the potential of growth factor-augmented biphasic implants composed of a gel and a solid scaffold to enhance chondrogenesis of mesenchymal stem cells (MSCs). We analyzed whether a collagen type I/III carrier and fibrin glue (FG) combined to a biphasic construct support in vitro...
Saved in:
Published in: | Tissue engineering. Part A 2010-02, Vol.16 (2), p.453-464 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Little is known about the potential of growth factor-augmented biphasic implants composed of a gel and a solid scaffold to enhance chondrogenesis of mesenchymal stem cells (MSCs). We analyzed whether a collagen type I/III carrier and fibrin glue (FG) combined to a biphasic construct support
in vitro
chondrogenesis of MSCs and allow for local release of bioactive transforming growth factor-beta1 (TGF-β1). Further, a possible advantage of partial autologous fibrin glue (PAF) over commercial FG was assessed. Collagen carriers seeded with 5 × 10
5
human MSCs with or without FG, PAF, or TGF-β1–upgraded FG were cultured for 6 weeks in chondrogenic medium with or without TGF-β1. Pellets with or without FG/PAF served as controls. FG and collagen carriers allowed strong upregulation of COL2A1, AGC, and COL10A1 mRNA, deposition of collagen-type II, and mediated a significantly higher proteoglycan content compared with biomaterial-free pellets. Collagen-carrier groups contained significantly more proteoglycan than FG and PAF pellets, whereas biphasic PAF-carrier constructs were inferior to FG-carrier constructs. Upgrading of biphasic FG-carrier constructs with 50 ng TGF-β1/construct mediated chondrogenesis as successfully as supply of TGF-β1 via the medium. In conclusion, the biphasic carrier constructs showed a high biofunctionality by continuous form stability with improved chondrogenesis and long-term local supply of bioactive TGF-β1 which may be useful to enhance matrix-assisted repair strategies for damaged cartilage. |
---|---|
ISSN: | 1937-3341 1937-335X |
DOI: | 10.1089/ten.tea.2009.0168 |