Loading…
Fractional Feynman-Kac equation for non-brownian functionals
We derive backward and forward fractional Feynman-Kac equations for the distribution of functionals of the path of a particle undergoing anomalous diffusion. Fractional substantial derivatives introduced by Friedrich and co-workers [Phys. Rev. Lett. 96, 230601 (2006)10.1103/PhysRevLett.96.230601] pr...
Saved in:
Published in: | Physical review letters 2009-11, Vol.103 (19), p.190201-190201, Article 190201 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We derive backward and forward fractional Feynman-Kac equations for the distribution of functionals of the path of a particle undergoing anomalous diffusion. Fractional substantial derivatives introduced by Friedrich and co-workers [Phys. Rev. Lett. 96, 230601 (2006)10.1103/PhysRevLett.96.230601] provide the correct fractional framework for the problem. For applications, we calculate the distribution of occupation times in half space and show how the statistics of anomalous functionals is related to weak ergodicity breaking. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.103.190201 |