Loading…

Urease-null and hydrogenase-null phenotypes of a phylloplane bacterium reveal altered nickel metabolism in two soybean mutants

Mutation at either of two genetic loci (Eu2 or Eu3) in soybean (Glycine max [L.] Merr.) results in a pleiotropic elimination of the activity of both major urease isozymes. Surprisingly, the phenotype of a phylloplane bacterium, Methylobacterium mesophilicum, living on the leaves of eu2/eu2 or eu3-e1...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 1992-03, Vol.98 (3), p.942-948
Main Authors: Holland, M.A. (University of Missouri, Columbia, MO), Polacco, J.C
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3422-8657729f756e884a6eb72f01e701f5ca97b2e92ced88031b92069cd93679c82b3
cites
container_end_page 948
container_issue 3
container_start_page 942
container_title Plant physiology (Bethesda)
container_volume 98
creator Holland, M.A. (University of Missouri, Columbia, MO)
Polacco, J.C
description Mutation at either of two genetic loci (Eu2 or Eu3) in soybean (Glycine max [L.] Merr.) results in a pleiotropic elimination of the activity of both major urease isozymes. Surprisingly, the phenotype of a phylloplane bacterium, Methylobacterium mesophilicum, living on the leaves of eu2/eu2 or eu3-e1/eu3-e1 mutants is also affected by these plant mutations. The bacteria isolated from leaves of these soybean mutants have transient urease- and hydrogenase-deficient phenotypes that can be corrected by the addition of nickel to free-living cultures. The same bacterium growing on wild-type soybeans or on urease mutants eu1-sun/ eu1-sun or eu4/eu4, each deficient in only one urease isozyme, are urease-positive. These results suggest that the bacterium living on the eu2/eu2 or eu3-e1/eu3-e1 mutant is unable to produce an active urease or hydrogenase because it is effectively starved for nickel. We infer that mutations at Eu2 or Eu3 result in defects in nickel metabolism but not in Ni(2+) uptake or transport, because eu2/eu2 and eu3-e1/eu3-e1 mutants exhibit normal uptake of 63NiCl2. Moreover, wild-type plants grafted on mutant rootstocks produce seeds with fully active urease, indicating unimpeded transport of nickel through mutant roots and stems
doi_str_mv 10.1104/pp.98.3.942
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_733497416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4274191</jstor_id><sourcerecordid>4274191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3422-8657729f756e884a6eb72f01e701f5ca97b2e92ced88031b92069cd93679c82b3</originalsourceid><addsrcrecordid>eNpFkEuLFDEUhYMoTs_oyp2IZCG4kG7zqjyWMjgqDLjQXodU6tZMjamkTKpGauNvN0037eo-zsfh3oPQK0p2lBLxcZp2Ru_4zgj2BG1ow9mWNUI_RRtCak-0NhfospQHQgjlVDxHF1RKqZXUG_R3n8EV2MYlBOxih-_XLqc7iOfldA8xzesEBaceuzqvIaQpuAi4dX6GPCwjzvAIrjqEOkOH4-B_QcAjzK5NYSgjHiKe_yRc0tqCi3hcZhfn8gI9610o8PJUr9D-5vPP66_b2-9fvl1_ut16LhjbatkoxUyvGglaCyehVawnFBShfeOdUS0Dwzx0WhNOW8OINL4zXCrjNWv5FXp_9J1y-r1Ame04FA_h8EVailWcC6MElZX8cCR9TqVk6O2Uh9Hl1VJiD3nbabJGW25r3pV-e_Jd2hG6_-wp4Aq8OwGueBf67KIfyplrhOBUHbA3R-yhzCmfZcHqTYZW-fVR7l2y7i5Xh_0PQ7Xm9fB_ZFqbbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733497416</pqid></control><display><type>article</type><title>Urease-null and hydrogenase-null phenotypes of a phylloplane bacterium reveal altered nickel metabolism in two soybean mutants</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Alma/SFX Local Collection</source><creator>Holland, M.A. (University of Missouri, Columbia, MO) ; Polacco, J.C</creator><creatorcontrib>Holland, M.A. (University of Missouri, Columbia, MO) ; Polacco, J.C</creatorcontrib><description>Mutation at either of two genetic loci (Eu2 or Eu3) in soybean (Glycine max [L.] Merr.) results in a pleiotropic elimination of the activity of both major urease isozymes. Surprisingly, the phenotype of a phylloplane bacterium, Methylobacterium mesophilicum, living on the leaves of eu2/eu2 or eu3-e1/eu3-e1 mutants is also affected by these plant mutations. The bacteria isolated from leaves of these soybean mutants have transient urease- and hydrogenase-deficient phenotypes that can be corrected by the addition of nickel to free-living cultures. The same bacterium growing on wild-type soybeans or on urease mutants eu1-sun/ eu1-sun or eu4/eu4, each deficient in only one urease isozyme, are urease-positive. These results suggest that the bacterium living on the eu2/eu2 or eu3-e1/eu3-e1 mutant is unable to produce an active urease or hydrogenase because it is effectively starved for nickel. We infer that mutations at Eu2 or Eu3 result in defects in nickel metabolism but not in Ni(2+) uptake or transport, because eu2/eu2 and eu3-e1/eu3-e1 mutants exhibit normal uptake of 63NiCl2. Moreover, wild-type plants grafted on mutant rootstocks produce seeds with fully active urease, indicating unimpeded transport of nickel through mutant roots and stems</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.98.3.942</identifier><identifier>PMID: 16668768</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Physiologists</publisher><subject>ACTIVIDAD ENZIMATICA ; ACTIVITE ENZYMATIQUE ; BACTERIA ; Bacteriology ; Biological and medical sciences ; Callus ; FENOTIPOS ; FEUILLE ; Fundamental and applied biological sciences. Psychology ; Genetic mutation ; Genotypes ; GLYCINE MAX ; HOJAS ; Leaves ; Metabolism. Enzymes ; METABOLISME ; METABOLISMO ; Microbiology ; MUTANT ; MUTANTES ; NICKEL ; NIQUEL ; OXIDORREDUCTASAS ; OXYDOREDUCTASE ; PHENOTYPE ; Phenotypes ; Plants ; Scions ; Seedlings ; Soybeans ; UREASA ; UREASE</subject><ispartof>Plant physiology (Bethesda), 1992-03, Vol.98 (3), p.942-948</ispartof><rights>Copyright 1992 American Society of Plant Physiologists</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3422-8657729f756e884a6eb72f01e701f5ca97b2e92ced88031b92069cd93679c82b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4274191$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4274191$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5443178$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16668768$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Holland, M.A. (University of Missouri, Columbia, MO)</creatorcontrib><creatorcontrib>Polacco, J.C</creatorcontrib><title>Urease-null and hydrogenase-null phenotypes of a phylloplane bacterium reveal altered nickel metabolism in two soybean mutants</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Mutation at either of two genetic loci (Eu2 or Eu3) in soybean (Glycine max [L.] Merr.) results in a pleiotropic elimination of the activity of both major urease isozymes. Surprisingly, the phenotype of a phylloplane bacterium, Methylobacterium mesophilicum, living on the leaves of eu2/eu2 or eu3-e1/eu3-e1 mutants is also affected by these plant mutations. The bacteria isolated from leaves of these soybean mutants have transient urease- and hydrogenase-deficient phenotypes that can be corrected by the addition of nickel to free-living cultures. The same bacterium growing on wild-type soybeans or on urease mutants eu1-sun/ eu1-sun or eu4/eu4, each deficient in only one urease isozyme, are urease-positive. These results suggest that the bacterium living on the eu2/eu2 or eu3-e1/eu3-e1 mutant is unable to produce an active urease or hydrogenase because it is effectively starved for nickel. We infer that mutations at Eu2 or Eu3 result in defects in nickel metabolism but not in Ni(2+) uptake or transport, because eu2/eu2 and eu3-e1/eu3-e1 mutants exhibit normal uptake of 63NiCl2. Moreover, wild-type plants grafted on mutant rootstocks produce seeds with fully active urease, indicating unimpeded transport of nickel through mutant roots and stems</description><subject>ACTIVIDAD ENZIMATICA</subject><subject>ACTIVITE ENZYMATIQUE</subject><subject>BACTERIA</subject><subject>Bacteriology</subject><subject>Biological and medical sciences</subject><subject>Callus</subject><subject>FENOTIPOS</subject><subject>FEUILLE</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic mutation</subject><subject>Genotypes</subject><subject>GLYCINE MAX</subject><subject>HOJAS</subject><subject>Leaves</subject><subject>Metabolism. Enzymes</subject><subject>METABOLISME</subject><subject>METABOLISMO</subject><subject>Microbiology</subject><subject>MUTANT</subject><subject>MUTANTES</subject><subject>NICKEL</subject><subject>NIQUEL</subject><subject>OXIDORREDUCTASAS</subject><subject>OXYDOREDUCTASE</subject><subject>PHENOTYPE</subject><subject>Phenotypes</subject><subject>Plants</subject><subject>Scions</subject><subject>Seedlings</subject><subject>Soybeans</subject><subject>UREASA</subject><subject>UREASE</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNpFkEuLFDEUhYMoTs_oyp2IZCG4kG7zqjyWMjgqDLjQXodU6tZMjamkTKpGauNvN0037eo-zsfh3oPQK0p2lBLxcZp2Ru_4zgj2BG1ow9mWNUI_RRtCak-0NhfospQHQgjlVDxHF1RKqZXUG_R3n8EV2MYlBOxih-_XLqc7iOfldA8xzesEBaceuzqvIaQpuAi4dX6GPCwjzvAIrjqEOkOH4-B_QcAjzK5NYSgjHiKe_yRc0tqCi3hcZhfn8gI9610o8PJUr9D-5vPP66_b2-9fvl1_ut16LhjbatkoxUyvGglaCyehVawnFBShfeOdUS0Dwzx0WhNOW8OINL4zXCrjNWv5FXp_9J1y-r1Ame04FA_h8EVailWcC6MElZX8cCR9TqVk6O2Uh9Hl1VJiD3nbabJGW25r3pV-e_Jd2hG6_-wp4Aq8OwGueBf67KIfyplrhOBUHbA3R-yhzCmfZcHqTYZW-fVR7l2y7i5Xh_0PQ7Xm9fB_ZFqbbw</recordid><startdate>199203</startdate><enddate>199203</enddate><creator>Holland, M.A. (University of Missouri, Columbia, MO)</creator><creator>Polacco, J.C</creator><general>American Society of Plant Physiologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199203</creationdate><title>Urease-null and hydrogenase-null phenotypes of a phylloplane bacterium reveal altered nickel metabolism in two soybean mutants</title><author>Holland, M.A. (University of Missouri, Columbia, MO) ; Polacco, J.C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3422-8657729f756e884a6eb72f01e701f5ca97b2e92ced88031b92069cd93679c82b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>ACTIVIDAD ENZIMATICA</topic><topic>ACTIVITE ENZYMATIQUE</topic><topic>BACTERIA</topic><topic>Bacteriology</topic><topic>Biological and medical sciences</topic><topic>Callus</topic><topic>FENOTIPOS</topic><topic>FEUILLE</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic mutation</topic><topic>Genotypes</topic><topic>GLYCINE MAX</topic><topic>HOJAS</topic><topic>Leaves</topic><topic>Metabolism. Enzymes</topic><topic>METABOLISME</topic><topic>METABOLISMO</topic><topic>Microbiology</topic><topic>MUTANT</topic><topic>MUTANTES</topic><topic>NICKEL</topic><topic>NIQUEL</topic><topic>OXIDORREDUCTASAS</topic><topic>OXYDOREDUCTASE</topic><topic>PHENOTYPE</topic><topic>Phenotypes</topic><topic>Plants</topic><topic>Scions</topic><topic>Seedlings</topic><topic>Soybeans</topic><topic>UREASA</topic><topic>UREASE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holland, M.A. (University of Missouri, Columbia, MO)</creatorcontrib><creatorcontrib>Polacco, J.C</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holland, M.A. (University of Missouri, Columbia, MO)</au><au>Polacco, J.C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Urease-null and hydrogenase-null phenotypes of a phylloplane bacterium reveal altered nickel metabolism in two soybean mutants</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>1992-03</date><risdate>1992</risdate><volume>98</volume><issue>3</issue><spage>942</spage><epage>948</epage><pages>942-948</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Mutation at either of two genetic loci (Eu2 or Eu3) in soybean (Glycine max [L.] Merr.) results in a pleiotropic elimination of the activity of both major urease isozymes. Surprisingly, the phenotype of a phylloplane bacterium, Methylobacterium mesophilicum, living on the leaves of eu2/eu2 or eu3-e1/eu3-e1 mutants is also affected by these plant mutations. The bacteria isolated from leaves of these soybean mutants have transient urease- and hydrogenase-deficient phenotypes that can be corrected by the addition of nickel to free-living cultures. The same bacterium growing on wild-type soybeans or on urease mutants eu1-sun/ eu1-sun or eu4/eu4, each deficient in only one urease isozyme, are urease-positive. These results suggest that the bacterium living on the eu2/eu2 or eu3-e1/eu3-e1 mutant is unable to produce an active urease or hydrogenase because it is effectively starved for nickel. We infer that mutations at Eu2 or Eu3 result in defects in nickel metabolism but not in Ni(2+) uptake or transport, because eu2/eu2 and eu3-e1/eu3-e1 mutants exhibit normal uptake of 63NiCl2. Moreover, wild-type plants grafted on mutant rootstocks produce seeds with fully active urease, indicating unimpeded transport of nickel through mutant roots and stems</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Physiologists</pub><pmid>16668768</pmid><doi>10.1104/pp.98.3.942</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 1992-03, Vol.98 (3), p.942-948
issn 0032-0889
1532-2548
language eng
recordid cdi_proquest_miscellaneous_733497416
source JSTOR Archival Journals and Primary Sources Collection; Alma/SFX Local Collection
subjects ACTIVIDAD ENZIMATICA
ACTIVITE ENZYMATIQUE
BACTERIA
Bacteriology
Biological and medical sciences
Callus
FENOTIPOS
FEUILLE
Fundamental and applied biological sciences. Psychology
Genetic mutation
Genotypes
GLYCINE MAX
HOJAS
Leaves
Metabolism. Enzymes
METABOLISME
METABOLISMO
Microbiology
MUTANT
MUTANTES
NICKEL
NIQUEL
OXIDORREDUCTASAS
OXYDOREDUCTASE
PHENOTYPE
Phenotypes
Plants
Scions
Seedlings
Soybeans
UREASA
UREASE
title Urease-null and hydrogenase-null phenotypes of a phylloplane bacterium reveal altered nickel metabolism in two soybean mutants
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A49%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Urease-null%20and%20hydrogenase-null%20phenotypes%20of%20a%20phylloplane%20bacterium%20reveal%20altered%20nickel%20metabolism%20in%20two%20soybean%20mutants&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Holland,%20M.A.%20(University%20of%20Missouri,%20Columbia,%20MO)&rft.date=1992-03&rft.volume=98&rft.issue=3&rft.spage=942&rft.epage=948&rft.pages=942-948&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.98.3.942&rft_dat=%3Cjstor_proqu%3E4274191%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3422-8657729f756e884a6eb72f01e701f5ca97b2e92ced88031b92069cd93679c82b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733497416&rft_id=info:pmid/16668768&rft_jstor_id=4274191&rfr_iscdi=true