Loading…

A bootstrap evaluation of the effect of data splitting on financial time series

Exposes problems of the commonly used technique of splitting the available data into training, validation, and test sets that are held fixed, warns about drawing too strong conclusions from such static splits, and shows potential pitfalls of ignoring variability across splits. Using a bootstrap or r...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on neural networks 1998-01, Vol.9 (1), p.213-220
Main Authors: LeBaron, B., Weigend, A.S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Exposes problems of the commonly used technique of splitting the available data into training, validation, and test sets that are held fixed, warns about drawing too strong conclusions from such static splits, and shows potential pitfalls of ignoring variability across splits. Using a bootstrap or resampling method, we compare the uncertainty in the solution stemming from the data splitting with neural-network specific uncertainties (parameter initialization, choice of number of hidden units, etc.). We present two results on data from the New York Stock Exchange. First, the variation due to different resamplings is significantly larger than the variation due to different network conditions. This result implies that it is important to not over-interpret a model (or an ensemble of models) estimated on one specific split of the data. Second, on each split, the neural-network solution with early stopping is very close to a linear model; no significant nonlinearities are extracted.
ISSN:1045-9227
1941-0093
DOI:10.1109/72.655043