Loading…

Cell-surface fucosylation and magnetic resonance spectroscopy characterization of human malignant colorectal cells

Proton (1H) magnetic resonance spectroscopy (MRS) has been used to distinguish lowly and highly tumorigenic human malignant colorectal cell lines based on differences in lipid, choline, and fucose resonances. The spectral patterns were comparable with those obtained for human colorectal biopsy speci...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 1992-11, Vol.31 (45), p.11095-11105
Main Authors: Lean, Cynthia L, Mackinnon, Wanda B, Delikatny, E. James, Whitehead, Robert H, Mountford, Carolyn E
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Proton (1H) magnetic resonance spectroscopy (MRS) has been used to distinguish lowly and highly tumorigenic human malignant colorectal cell lines based on differences in lipid, choline, and fucose resonances. The spectral patterns were comparable with those obtained for human colorectal biopsy specimens, indicating that cells grown in vitro are suitable for documenting colorectal tumor biology. For the first time, two-dimensional (2D) correlation spectroscopy (COSY) has been used to assess the fucosylation state on the surface of intact viable cells, and differences were recorded between the highly and lowly tumorigenic cell lines. Four methyl-methine cross-peaks were assigned to covalently linked fucose on the basis of increases in volume following the addition of free fucose. Both cell lines incorporated the same amount of exogenous free fucose as determined chemically, but the COSY spectra indicated that the fucose was distributed differently by each cell line. Of the four sites containing MR-visible bound fucose, one was common to both cell lines, two characteristic of the highly tumorigenic line, and the remaining site unique to the lowly tumorigenic cells. Material released from the highly tumorigenic cells in response to increased cell density was also fucosylated (whereas shed material from lowly tumorigenic cells was not), suggesting a biological role for shed fucosylated antigens in tumor aggression.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi00160a020