Loading…

A Spontaneous Acinar Cell Carcinoma Model for Monitoring Progression of Pancreatic Lesions and Response to Treatment Through Noninvasive Bioluminescence Imaging

Purpose: We have generated an EL1-luc/TAg transgenic mouse model that develops spontaneous and bioluminescent acinar cell carcinomas. We applied this model to noninvasively monitor tumor development and drug response. Experimental Design: EL1-luc/TAg transgenic mice of 11 weeks of age were treated w...

Full description

Saved in:
Bibliographic Details
Published in:Clinical cancer research 2009-08, Vol.15 (15), p.4915-4924
Main Authors: NING ZHANG, LYONS, Scott, LIM, Ed, LASSOTA, Peter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose: We have generated an EL1-luc/TAg transgenic mouse model that develops spontaneous and bioluminescent acinar cell carcinomas. We applied this model to noninvasively monitor tumor development and drug response. Experimental Design: EL1-luc/TAg transgenic mice of 11 weeks of age were treated with rapamycin (5 mg/kg, i.p.) or vehicle for 6 to 12 weeks. Tumor development was monitored through bioluminescence imaging and necropsy at the study end point. Results: EL1-luc/TAg transgenic mice showed pancreas-specific bioluminescence signal before tumor progression and produced increasing light emission from the onset of the pancreatic acinar cell carcinomas. The latency of tumor development ranged from 10 to >20 weeks of age in these mice. Progression of the primary acinar cell carcinoma was accompanied by emergence of metastatic lesions in the abdominal organs, including liver and gastrointestinal fat tissues. Rapamycin treatment suppressed tumor development. Conclusions: The EL1-luc/TAg mouse provides a noninvasive approach for monitoring spontaneous acinar cell carcinoma development and comprises a convenient tool for the evaluation of novel therapeutics against pancreatic cancers. Tumor growth suppression through inhibition of the mammalian target of rapamycin pathway further validates this model as clinically relevant.
ISSN:1078-0432
1557-3265
DOI:10.1158/1078-0432.CCR-08-2256